
In This Issue
(Click on an article link to read it,
click on the ADA News header to return to this page.)

• How to Reach Us

• Colophon

• Feature Article:
Adobe® Acrobat® Viewer Layer of Plug-in API Revealed

• Developing with Adobe Photoshop®

Developing with Adobe PageMaker®

ada
t e c h n i c a l

j o u r n a l
VOLUME 1, NO. 1

✆

ADA Technical Journal Volume 1, Number 1

PostScript® Technology Column

Developing with Adobe Illustrator®

Developing with Adobe FrameMaker®

http://www.adobe.com/
http://www.adobe.com/supportservice/devrelations/main.html

✆ADA Technical Journal Volume 1, Number 1

How to Reach Us

Developer Information

on the World Wide Web:

www.adobe.com

See the Support and Services section

and point to Developer Relations.

Developers

Association Hotline:

U.S. and Canada:

(408) 536-9000

M–F, 8 a.m.–5 p.m., PDT.

If all engineers are unavailable, please

leave a detailed message with your

developer number, name, and telephone

number, and we will get back to you

within one work day.

Europe:

+44-131-458-6800

Fax:

U.S. and Canada:

(408) 536-6883

Attention:

Adobe Developers Association

Europe:

+44-131-458-6801

Attention:

Adobe Developers Association

EMAIL:

U.S.

ada@adobe.com

Europe:

euroADA@adobe.com

Mail:

U.S. and Canada:

Adobe Developers Association

Adobe Systems Incorporated

345 Park Avenue

San Jose, CA 95110-2704

Europe:

Adobe Developers Association

P.O. Box 12356

Edinburgh EH1146J

United Kindgom

Send all inquiries, letters, and address

changes to the appropriate address above.

http://www.adobe.com/

✆ADA Technical Journal Volume 1, Number 1

Feature Article • PAGE 1/14

F e a t u r e A r t i c l eAdobe Acrobat Viewer Layer
of Plug-in API Revealed

Developers no longer need to sign non-disclosure

agreements to buy the Adobe Acrobat Plug-ins

Software Development Kit (SDK), so the deeper

capabilities of the Acrobat Plug-in API can now

be revealed.

This article introduces the object-oriented plug-in

API and shows how to tailor the Acrobat viewer’s

user interface to your needs. Finally, it walks you

through code samples that add a menu item and

toolbar button to the viewer user interface.

Objects and Methods
Plug-ins are software modules that directly commu-

nicate with an Acrobat viewer (Acrobat Exchange® or

Acrobat Reader) to add capability or change viewer

operation. Unlike Interapplication Communication

(IAC), the API for plug-ins is essentially platform-

independent: its function set is nearly identical on

Macintosh, Windows,® and UNIX® systems.

The plug-in API contains over 600 functions, which

are structured around a set of objects. Most of these

objects correspond to elements of either the viewer’s

user interface or PDF files.

The Acrobat viewer user interface is modeled as a set

of AV layer objects (where AV stands for Acrobat

Viewer). For instance, an AVMenu object represents

a particular menu in the menubar; an AVMenuItem is

a menu item in a menu. An AVDoc is the representa-

tion of a PDF document in a viewer window.

✆ADA Technical Journal Volume 1, Number 1

Adobe Acrobat Viewer Layer of Plug-in API Revealed

Feature Article • PAGE 2/14

PDF file objects are classified as either PD layer or Cos

layer objects. The PD model of objects views a PDF

file as a set of high-level objects, such as pages and

annotations. A PDTextAnnot object is a text annota-

tion and a PDBookmark is a bookmark, for example. A

PDDoc represents an open PDF file. The Cos (standing

for the self-referential Cos object system) layer consid-

ers PDF files to be composed of low-level atomic

objects, such as text strings and dictionaries. PDF’s

heritage is apparent at this level: Cos objects are all

PostScript language objects.

From a developer’s viewpoint, objects are opaque

encapsulations of data in the Acrobat viewer API,

implemented as structs in the C language. The

internal structure of these objects is hidden from

API users. Each object typically has a set of functions

or methods associated with it.

The naming convention for classes and methods

makes it easy to tell what they are and what they do.

Objects’ class names have a layer prefix: AV–, PD–, or

Cos–. (An AS– prefix is used for the Acrobat Support

layer, which contains utility objects and functions.)

An object type follows the layer name and completes

the class name. AVMenubar and AVToolButton are AV
layer objects; PDLinkAnnot and PDWord are PD layer

objects, CosDoc is a Cos layer object. Thus an object

name identifies its layer and the kind of object it is.

Method names associated with a class start with the

class name. This is followed by a verb to describe

the action of the method and the verb’s object, if it

has one. For example, the AVDocClose() method closes

an AVDoc; that is, it closes the window displaying a

PDF document. AVDocPrintPages() is a method that

✆ADA Technical Journal Volume 1, Number 1

Adobe Acrobat Viewer Layer of Plug-in API Revealed

Feature Article • PAGE 3/14

prints the pages in an AVDoc. AVMenuGetName() gets

the name associated with a menu. Knowing this

pattern, you can generally tell what a method does

or guess the method name for some operation on

an object.

For most methods, the first argument is the object on

which the method is operating: the AVDocClose()
method’s first argument is the AVDoc to be closed, for

instance. This follows the object-oriented paradigm

of sending a message to an object telling it to perform

one of its methods.

The rest of this article focuses on how a plug-in can

change the viewer’s user interface using AV layer

methods.

AV Layer Objects
You can add or remove most of the viewer’s controls—

menu items, toolbar buttons, and so forth—to change

the viewer’s operation or to control capabilities you

add to the viewer.

The AV layer contains 16 classes corresponding to

parts of the user interface. Some of them, such as

AVMenu and AVToolButton, correspond directly to

things you can see in the user interface. Others are

more abstract: an AVPageView represents a particular

view of a document, considering the page displayed,

scroll position, and zoom factor.

Figure 1 illustrates the hierarchy of AV layer objects.

✆ADA Technical Journal Volume 1, Number 1

Adobe Acrobat Viewer Layer of Plug-in API Revealed

Feature Article • PAGE 4/14

AVAlert

AVActionHandler AVAnnotHandler

AVApp

AVDoc

AVGrafSelect

AVMenubar

AVMenuItem

AVPageView

AVSys

AVToolAVToolbar

AVToolbuttonAVWindow AVCryptSelection AVMenu

PDTextSelect

Figure 1 AV layer objects

✆ADA Technical Journal Volume 1, Number 1

Adobe Acrobat Viewer Layer of Plug-in API Revealed

Feature Article • PAGE 5/14

Here’s a description of key AV layer objects:

• AVApp—the Acrobat viewer itself. Through AVApp, you

perform global viewer operations, such as accessing

the currently active tool or the frontmost document.

• AVDoc—the view of a document in a window. There is

one AVDoc for every displayed document.

• AVPageView—the area displaying a particular view of

a document, considering the page displayed, scroll

position, and zoom factor.

• AVMenubar, AVMenu, AVMenuItem—the menubar, the

menus within it, and the menu items in each menu.

There is only one AVMenubar.

• AVToolBar, AVToolButton—the tool bar and the toolbar

buttons on it. There is only one AVToolBar. Note the

similarity of AVMenubar and AVToolBar: each holds a

set of objects a user can click to perform commands.

• AVTool—a set of callbacks (wrappers for function

pointers the viewer uses to call back the plug-in)

that implement a tool, such as the hand tool, to

handle key presses and mouse clicks in an

AVPageView. A tool may be activated by a toolbar

button, but you don’t have to have a button for a

tool—these objects are not necessarily coupled.

• AVActionHandler—a set of callbacks to carry out an

action, such as traversing a bookmark.

• AVAnnotHandler—a set of callbacks that perform

operations on an annotation: creating, displaying,

selecting, and deleting a particular type of annotation.

• AVSys—an object to access system functions, such as

setting the cursor shape and beeping.

✆ADA Technical Journal Volume 1, Number 1

Adobe Acrobat Viewer Layer of Plug-in API Revealed

Feature Article • PAGE 6/14

• AVAlert—platform-independent support for display-

ing a simple dialog box.

Now let’s survey some of the commonly used

methods associated with these objects. This provides

a concrete illustration of ways you can manipulate

the viewer’s interface.

AV Layer Methods
This section lists a few methods you’ll find especially

useful when writing plug-ins. For a detailed descrip-

tion of each method, see “AV Layer” in the methods

section of technical note #5168, “Acrobat Viewer

Plug-In API On-line Reference,” in the Acrobat

Plug-ins SDK.

AVApp

AVAppGetActiveDoc() Get the frontmost
document.

AVAppGet... –Menubar(), –ToolBar() Get the menubar or
toolbar.

AVAppRegister... –ActionHandler(), Register an action
 –AnnotHandler(), –Tool() handler, annotation

handler, or tool.

AVAppRegisterNotification() Register to be notified
when a certain event
occurs.

AVDoc

AVDocPrintPages() Print pages from
a document.

AVDocPerformAction() Perform an action, such
as traversing a link.

AVDocClose(), AVDocDoSave() Close or save
a document.

✆ADA Technical Journal Volume 1, Number 1

Adobe Acrobat Viewer Layer of Plug-in API Revealed

Feature Article • PAGE 7/14

AVPageView

AVPageView... –GoTo(), –ScrollTo(), –ZoomTo() Go to a page, scroll to a
location, or change the
zoom factor.

AVPageViewGetAVDoc() Get the AVDoc
for an AVPageView.

AVMenubar

AVMenuBarAddMenu() Add a menu to the
menubar.

AVMenu

AVMenuNew() Create a new menu.

AVMenuAddMenuItem() Add a menu item to
a menu.

AVMenuItem

AVMenuItemNew() Create a new
menu item.

AVMenuItem (continued)

AVMenuItemSetExecuteProc() Set the procedure to
be called when a menu
item is selected.

AVMenuItemExecute() Execute a menu
item, as if it were
selected.

AVToolBar

AVToolBarAddButton() Add a button to
the toolbar.

AVToolButton

AVToolButtonNew() Create a new toolbar
button.

AVToolButtonSetExecuteProc() Set the procedure
called when a
button is clicked.

AVToolButtonExecute() Execute a button, as
if it were clicked.

✆ADA Technical Journal Volume 1, Number 1

Adobe Acrobat Viewer Layer of Plug-in API Revealed

Feature Article • PAGE 8/14

AVSys

AVSysBeep() Sound the system beep.

AVSysGetCursor(), AVSysSetCursor() Get or set the cursor
shape.

AVAlert

AVAlertNote() Display a dialog box
with a message and
OK button.

Bridge methods
Objects are associated with each other. For instance,

every AVDoc has an AVPageView, and vice versa. It’s

frequently useful to bridge from one object to a

related object through bridge methods. For instance,

you will often want to get the current active AVDoc,

that is, the document displayed in the front-most

window. You can get this from the AVApp object using

the method AVAppGetActiveDoc(). You can also get the

AVDoc associated with an AVPageView with

AVPageViewGetAVDoc()—or get the AVPageView for an

AVDoc via AVDocGetPageView().

SDK sample
The SDK contains numerous samples of code show-

ing how to use the API objects and methods. The

PLUGINS directory contains SAMPLES directories

for Macintosh, UNIX, and Windows platforms. The

SAMPLES directory has a directory for each plug-in,

containing all files needed to create that plug-in.

The SAMPLES.PDF file in the SDK technical docu-

mentation describes each plug-in sample.

Template Sample 1: Adding a menu item
The SDK’s Template sample illustrates several simple

✆ADA Technical Journal Volume 1, Number 1

Adobe Acrobat Viewer Layer of Plug-in API Revealed

Feature Article • PAGE 9/14

ways to modify the viewer’s interface. Let’s examine

the sample code to add a menu item to a menu.

This code resides in the function MyInit() of the file

Template.c.

You first need to get the menubar, since it contains

the menus:

AVMenubar menubar = AVAppGetMenubar();

Note that you get the menubar from the AVApp
object—the viewer application itself.

Next, acquire the Preferences menu from the

menubar, asking for it by name:

AVMenu prefsMenu;

AVMenuItem menuItem;

prefsMenu = AVMenubarAcquireMenuByName(menubar,

"Prefs");

Each menu has a language-independent name to

identify it, “Prefs” in this case. Note that

AVMenubarAcquireMenuByName() can find the menu

even though it is a submenu under the File menu.

If prefsMenu is not NULL, create a menu item and add

it to this menu:

if (prefsMenu) {

 menuItem = AVMenuItemNew("Template…", "ADBE:Prefs",

 NULL, false, NO_SHORTCUT, 0, NULL, gExtensionID);

AVMenuItemSetExecuteProc(menuItem,

 ASCallbackCreateProto(AVExecuteProc,

 &TemplatePrefs), NULL);

AVMenuAddMenuItem(prefsMenu, menuItem,

 APPEND_MENUITEM);

AVMenuRelease(prefsMenu);

 }

✆ADA Technical Journal Volume 1, Number 1

Adobe Acrobat Viewer Layer of Plug-in API Revealed

Feature Article • PAGE 10/14

The AVMenuItemNew() method’s arguments specify

the (possibly localized) name that appears on the

menu item, an additional name that’s language-

independent, whether it’s a submenu item, and so on.

Notice that the language-independent name,

“ADBE:Prefs” has the prefix “ADBE:”. Plug-in writers

must begin their language-independent menu item

names with a developer ID to avoid name collisions

when more than one plug-in is present. Contact the

Adobe Developers Association to obtain an ID.

AVMenuItemSetExecuteProc() tells the Acrobat viewer

which function to call back when the menu item is

selected. The Acrobat viewer uses callbacks to specify

such functions.

Much of the viewer’s API is event-driven: in response

to some event, the viewer calls a function the plug-in

supplies for that event. In general, the Acrobat viewer

requires a plug-in to convert such function pointers

to callbacks, or ASCallback objects, which the macro

ASCallbackCreateProto() creates. Using callbacks is

necessary for some platforms so that global pointers

are set up correctly. Using the ASCallbackCreateProto()
macro also allows compilers to perform type check-

ing on the function’s arguments.

In this case, a callback is created for the function

TemplatePrefs(), which the plug-in defines. The viewer

calls back TemplatePrefs() each time the menu item

is selected.

AVMenuAddMenuItem() adds the menu item to the

Preferences menu—designated by the AVMenu object

prefsMenu.

✆ADA Technical Journal Volume 1, Number 1

Adobe Acrobat Viewer Layer of Plug-in API Revealed

Feature Article • PAGE 11/14

Finally, the AVMenuRelease() method releases the

AVMenu object that was acquired earlier after you’re

done with it, decrementing this object’s use count.

The TemplatePrefs() function has this definition:

 static ACCB1 void ACCB2 TemplatePrefs(void *data)

 {

 AVAlertNote("Template preferences");

 }

The ACCB1 and ACCB2 macros are required in every

function for which a callback is created. They are

automatically defined to be appropriate values for

each platform and help provide platform-indepen-

dent code. The only action TemplatePrefs() takes is to

call AVAlertNote(), which simply displays a dialog box

containing the text “Template preferences” and an

OK button.

Template Sample 2: Adding a toolbar button
The Template plug-in also shows how to add a button

to the toolbar, which is similar to adding a menu

item to a menu. Adding a button is simpler since you

can add it directly to the toolbar—you don’t have to

acquire an intermediate object like an AVMenu.

First, get the toolbar from the viewer:

AVToolBar toolBar = AVAppGetToolBar();

Next, find where to add the button on the toolbar

and add it:

AVToolButton toolButton, toolsSeparator;

toolsSeparator =

 AVToolBarGetButtonByName(toolBar,

 ASAtomFromString("endToolsGroup"));

✆ADA Technical Journal Volume 1, Number 1

Adobe Acrobat Viewer Layer of Plug-in API Revealed

Feature Article • PAGE 12/14

toolButton =

AVToolButtonNew(ASAtomFromString("ADBE:PrefsButton"),

GetToolIcon(), true, false);

AVToolBarAddButton(toolBar, toolButton, true,

toolsSeparator);

AVToolButtonSetExecuteProc(toolButton,

ASCallbackCreateProto(AVExecuteProc,

&TemplateCommand), NULL);

This code positions the new button at the end of the

group of buttons that correspond to tools, such as the

Hand tool and the Zoom tools. The small space at the

end of the Tools group on the toolbar is actually a

toolbar button itself, with the name “endToolsGroup”.

The method AVToolBarGetButtonByName() gets the

tools separator button—so you can position the new

button relative to it.

AVToolButtonNew() creates a button with the desired

properties, such as name and icon (which is plat-

form-dependent). ASAtomFromString() creates an

ASAtom (an Acrobat Support layer object), a hashed

token used in place of strings to improve perfor-

mance. ASAtoms appear as arguments in many methods.

The function GetToolIcon() should return an icon

appropriate to the platform.

AVToolBarAddButton() adds the button to the toolbar,

positioning it just before the tools separator button,

represented by the AVToolButton object toolsSeparator.

AVToolButtonSetExecuteProc() tells the viewer which

function to execute when the button is clicked. As in

the menu item example, ASCallbackCreateProto()
creates an ASCallback object from a function pointer.

✆ADA Technical Journal Volume 1, Number 1

Adobe Acrobat Viewer Layer of Plug-in API Revealed

Feature Article • PAGE 13/14

Let’s make this button execute the menu item defined

in the first example. You can define

TemplateCommand()—the function the viewer calls

when the button gets clicked—this way:

static ACCB1 void ACCB2 TemplateCommand(void

*data)

{

 AVMenuItem templateMenuItem;

 AVMenubar menubar = AVAppGetMenubar();

 templateMenuItem =

 AVMenubarAcquireMenuItemByName (menubar,

 "ADBE:Prefs");

 AVMenuItemExecute (templateMenuItem);

 AVMenuItemRelease (templateMenuItem);

}

Given the menu item name “ADBE:Prefs”, the

method AVMenubarAcquireMenuItemByName() returns

this menu item, which AVMenuItemExecute() executes.

These examples show simple ways to modify the user

interface. Much more is possible! You can add new

tools, new types of annotations, and the interfaces

to use them. The SAMPLES.PDF file in the SDK

documentation describes each plug-in that’s included

with the SDK. The file ROADMAP.PDF offers general

ideas of things you can do with the plug-in API.

You can write plug-ins to extend the Acrobat viewer

in many more ways than described in this article.

References
The Acrobat Plug-ins SDK contains several docu-

ments invaluable to plug-in authors.

✆ADA Technical Journal Volume 1, Number 1

Feature Article • PAGE 14/14

Technical note #5166, “Acrobat Viewer Plug-In API

Overview,” provides an excellent background for

developing plug-ins. It covers all the API layers and

objects, summarizing their associated methods. This

note also gives insight into various techniques and

mechanisms used throughout the API, such as

callbacks, notifications, and handlers.

Technical note #5167, “Acrobat Viewer Plug-In API

Development,” tells how to develop plug-ins on

Macintosh, UNIX, and Windows platforms.

Technical note #5168, “Acrobat Viewer Plug-In API

On-line Reference,” tells you everything you need to

know to use each API method: a functional descrip-

tion, arguments, return value, and other associated

information, including code samples using the method.

Technical note #5169, “Acrobat Viewer Plug-In API

Tutorial,” illustrates coding in greater depth, showing

how to do various operations with plug-ins.

The SDK’s SAMPLES directories, located in the

PLUGINS directory, contain the files for all plug-ins

in the SDK. The UNSUPPTD directory contains files

for additional plug-ins. Each plug-in’s directory

provides a Metrowerks® CodeWarrior® or Microsoft®

Visual C++™ project to build that plug-in. §

Adobe Acrobat Viewer Layer of Plug-in API Revealed

✆ADA Technical Journal Volume 1, Number 1

D E V E L O P I N G W I T H

A d o b e P h o t o s h o p

Developing with Adobe Photoshop • PAGE 1/79

Making a plug-in scripting-aware for Adobe Photoshop 4.0
The Adobe Photoshop 4.0 application programming interface (API) introduces a new feature
for automation: actions. Controlled by the user via the actions palette, plug-ins can execute pre-
defined commands and batches to allow the user to automate routine and difficult tasks from
a single button-click. This article details the process used to update two Adobe Photoshop 3.0.5
plug-ins, Dissolve and GradientImport (which was previously named DummyScan), to make
them scripting-aware and controllable via the actions palette.

Welcome to Adobe Photoshop 4.0 Actions
The Adobe Photoshop 4.0 API extends the 3.0.5 specification to include a number of new items.

One that affects all the plug-in types and specifications is the new automation system. The main user

interface for the automation system is the actions palette. The actions palette allows the user to specify

commands and plug-ins that are scripting-aware and record multiple events into actions that can be

executed with a single mouse-click.

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 2/79

Figure 1 Actions palette

A folder or group of files can also be controlled so that actions can be applied in a batch. This is called

batch-processing and is part of the Adobe Photoshop 4.0 actions palette.

All plug-ins can be controlled by the scripting system as execute-only commands. This means,

whether the plug-in is scripting-aware or not, the action system can execute the plug-in as if the user

had invoked it from its menu.

However, if your plug-in is scripting-aware, it goes further and allows the action system to control

your plug-in’s parameters automactically. This means that, unless there is an error or a parameter that

your plug-in needs that it didn’t get, your plug-in can operate silently, not needing to show its user

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 3/79

interface and interact with the user. This is extremely valuable for batch-processing and generating

special effects that require numerous commands and parameters.

Converting 3.0.5 to 4.0
My task was to take the existing plug-ins that shipped with the 3.0.5 software development kit (SDK)

and convert them all to the 4.0 API spec. This proved to be fairly straightforward for some plug-in

types, such as simple filters, and more involved for others, such as Import modules, especially with

ones that do multiple imports.

This article will detail how I converted two plug-ins, the Filter plug-in module Dissolve and the

Import plug-in module GradientImport to be scripting-aware.

The filter plug-in was vastly simpler, so I’ll start with that, and then detail the process for

GradientImport, which required additional code to handle the multiple import routines.

Scope of this article

More detail is in the SDK
Intimate details on all the scripting parameters and callback suites are available in the Adobe

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 4/79

Photoshop 4.0 SDK, which is available at Adobe’s web site:

www.adobe.com/supportservice/devrelations/sdks.html

This article will only address the callbacks and structures that were pertinent to updating the two

plug-in example modules. There is much more to the scripting system than is covered in this docu-

ment. I recommend that you read the SDK for more detail.

Macintosh or Windows?
Scripting implementation, recording, and playback are all part of the Adobe Photoshop API. This

means that, except in a few rare exceptions, the callbacks, data structures, and parameters are all

exactly the same on both Macintosh and Windows. This article shows Macintosh user interface ex-

amples, but the discussion and examples are comparable, if not exactly the same, on Windows.

Starting out

Basic scripting approach
The approach to creating a scripting-aware plug-in is detailed in the scripting chapter of the

Photoshop SDK programmer’s guide:

www.adobe.com/supportservice/devrelations/sdks.html

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 5/79

1. Look at your user interfaces and describe the parameters as human-readable text.

2. Create a terminology resource for your plug-in and your PiPL HasTerminology property.

3. Update your plug-in code to record scripting events and objects.

4. Update your plug-in code to be automated by (playback) scripting events and objects.

Figure 2 Dissolve filter user interface

With this in mind, I looked at the user interface for the Dissolve filter. This was the same both on

Macintosh and Windows. The Macintosh interface is shown in Figure 2.

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 6/79

After looking at my interface, I was able to describe it as these elements:

1. A button, “OK”, which I don’t need to be recordable.

2. A button, “Cancel”, which I don’t need to be recordable.

3. An amount, expressed as an integer from 1 to 100 representing a percentage.

4. A disposition, expressed as a textual enumeration of a mutually exclusive list of options, either

“Clear”, “Cool”, “Hot”, or “Sick”.

5. A flag for “entire image”, expressed as a boolean value of either yes or no.

This should look familiar. It is reminiscent of the resource text used to describe Macintosh dialog items.

When describing these items, it’s important to keep in mind how they will look when represented in

the actions palette. Since the actions palette does get loaded with text, it makes sense to use single

labels whenever possible and where it will be more readable to the user. I could have used four

booleans for “Clear”, “Cool”, “Hot”, and “Sick”, but since “Disposition” should always only be one

thing, it makes more sense to have the actions palette display:

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 7/79

Dissolve
Amount: 20%
Disposition: Cool

Than something like:

Dissolve
Amount: 20%
without Clear
with Cool
without Hot
without Sick

And speaking of booleans, it’s usually much better form to leave the default value of a boolean as

implied instead of explicitly showing it in the actions palette. Again, because the palette can get pretty

large, it’s better to only store boolean values that are different than your default. For instance, in the

example above, “Entire Image” isn’t listed in the palette because it was in its default (off) state. If it is

checked, then I would store it in the action descriptor and it would get displayed as:

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 8/79

Dissolve
Amount: 20%
Disposition: Cool
with Entire Image

Creating a terminology resource

AppleScript/AppleEvents
AppleScript and AppleEvents are the Macintosh’s automation system. The Photoshop 4.0 scripting

system is based heavily on the programming architecture defined by Apple. Most users think of

AppleScript and AppleEvents from the user perspective: the Macintosh script editor, firing off events

to different applications to automate procedures. What I’ll be describing here is the internal workings

necessary to define events to an external system. In this case, the plug-ins, such as Dissolve, must take

on extra descriptors that make their parameters available to the host, in this case, Adobe Photoshop

4.0. The terminology resource is the first internal description system that bridges the gap between the

plug-ins programming parameters and the external automation system.

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 9/79

Note that the Photoshop 4.0 automation system, while designed around the AppleScript/AppleEvent

model, has been created to integrate fully with OLE Automation on Windows. More information on

that is available in the appendix of the Photoshop SDK Guide.

Start with the examples
The terminology resource is a standard AppleScript/AppleEvent 'aete' resource. The terminology

resource is a bit cumbersome, so I always recommend starting with the example code. In this case,

I had to make it from scratch. First, I chose to define some common parameters that would change

from plug-in to plug-in:

#define vendorName "AdobeSDK" // Unique vendor name

#define ourSuiteID 'sdK1' // Must follow id guidelines

#define ourClassID ourSuiteID // Must be unique, but can be suite id

#define ourEventID 'disS' // Must follow id guidelines

#define ResourceID 16000 // Typical id for plug-ins

#define uniqueString "" // Empty

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 10/79

Then, I created the terminology resource:

resource 'aete' (ResourceID, purgeable)

{ // Aete version and language specifiers:
 1, 0, english, roman,

 { // Vendor suite name:

 vendorName, // "AdobeSDK"'

 "Adobe example plug-ins", // Optional description

 ourSuiteID, // Suite id 'sdK1'

 /* This is extremely important. All IDs, keys, and names
 must be unique. The SDK describes a naming convention that

 must be followed explicitly. Your scripting keys and IDs

 (unsigned32) must always follow these rules:

 1. They must start with a lowercase letter.

 2. They must contain at least one uppercase letter.

 3. They cannot be all lowercase.

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 11/79

 4. They cannot be all uppercase.

 More below when we get to keys. */

 1, // Suite code, must be 1

 1, // Suite level, must be 1

 { // Structure for filters. Unique filter name:

 vendorName " dissolve", // "AdobeSDK Dissolve"

 "dissolve noise filter", // Optional description

 ourClassID,

 // Class id must be unique or suite id. Suite id 'sdK1'.

 ourEventID, // Unique event id 'disS'

 NO_REPLY, // Never a reply

 IMAGE_DIRECT_PARAMETER,

 // Direct parameter. See PIActions.h for other macros.

 { // Parameters:

 "amount", // Parameter name

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 12/79

 /* Must be predefined parameter name and key from
 PIActions.h or unique name and key id. See

 'disposition' for example. */

 keyAmount, // Parameter key

 /* Must be predefined parameter key from PIActions.h or unique key id. */

 typeFloat, // Parameter type

 // TypeInteger, typeBoolean, typeText, etc., all defined in PIActions.h

 "dissolve amount", // Optional description

 flagsSingleParameter, // Parameter flags

 // Other parameters in PIActions.h

 // Second parameter:

 vendorName " disposition",

 // Unique name "AdobeSDK disposition"

 keyDisposition, // Unique key 'disP'

 typeMood, // Unique type 'mooD'

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 13/79

 "dissolve disposition", // Optional description

 flagsEnumeratedParameter // Parameter flags for enum

 vendorName " entire image",

 // Unique name "AdobeSDK entire image"

 keyEntireImage, // Unique key 'entI'

 typeBoolean,

 flagsSingleParameter

 } // Close parameters

 }, // Close filter structure

 { }, /* Plug-in classes for all other plug-ins here

 (we'll use this later) */

 { }, // Comparison ops (not supported)

 { // Any enumerations. We have one, typeMood:

 typeMood, // Unique type 'mooD'

 {

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 14/79

 vendorName " clear",

 // Unique name "AdobeSDK clear"

 dispositionClear, // Unique key 'moD0'

 "clear headed", // Optional description

 vendorName " cool",

 // Unique name "AdobeSDK cool"

 dispositionCool, // Unique key 'moD1'

 "got the blues", // Optional description

 vendorName " hot",

 // Unique name "AdobeSDK hot"

 dispositionHot, // Unique key 'moD2'

 "red-faced", // Optional description

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 15/79

 vendorName " sick",

 // Unique name "AdobeSDK sick"

 dispositionSick, // Unique key 'moD3'

 "green with envy" // Optional description

 } // Close typeMood

 } // Close enumerations

 } // Close vendor suite

}; // Close 'aete'

The terminology resource is parsed on the Macintosh side by a standard template included with most

compilers. On the Windows side, it is precompiled along with the ‘PiPL’ resource and then parsed by

the Photoshop resource file converter, CNVTPIPL.EXE. Either way, the Dissolve.r file is converted into

a working resource that is used at runtime by the host.

Add the HasTerminology resource to your PiPL
Once I had a complete terminology resource, I had to tell Photoshop where to find it, since a single

plug-in file can have multiple modules in it. To do this, I added a new PiPL type, HasTerminology.

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 16/79

Its syntax is:

HasTerminology { ourClassID, ourEventID, ResourceID, uniqueString }

Just to review, I defined the following parameters:

#define vendorName "AdobeSDK" // Unique vendor name

#define ourSuiteID 'sdK1' // Must follow id guidelines

#define ourClassID ourSuiteID // Must be unique, but can be suite id

#define ourEventID 'disS' // Must follow id guidelines

#define ResourceID 16000 // Typical id for plug-ins

#define uniqueString "" // Empty

The AppleScript and AppleEvent architecture makes all key and name dictionaries global, which is

why unique key/name pairs are required. A predefined dictionary of common terms is defined in

PIActions.h. You can use those keys and their obvious names (keyColor, name “Color”) instead of

having to create unique key and name pairs. I recommend using the standard keys whenever you

possibly can.

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 17/79

If you define a uniqueString, then your plug-in will stay scoped only to Photoshop and you will not

have to worry about having globally unique names. But you still have to worry about conflicting with

your other suites using that same uniqueString. For example, I didn’t have to use key names such as

“AdobeSDK disposition”—I could have just used “disposition.” But I chose to keep everything scoped

globally for future AppleScript/AppleEvent compatibility.

Creating a scripting recording function
The next step for Dissolve was to record my parameters. There are a number of utility routines defined

in PIUtilities.h and PIUtilities.c to make reading and writing from descriptors easier than having

to access the procedures directly through the callback structure. You cannot check a scripting playback

function, nor whether a terminology resource is correct, until some parameters are handed to

Photoshop.

To use globals or not to use globals, that is the question!
For versions of Photoshop prior to 4.0, the only way to track global variables was for you to allocate

the memory yourself and store the global values in a parameter handle that was handed back to the

plug-in on subsequent iterations.

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 18/79

The Photoshop 4.0 scripting system will always pass your plug-in a descriptor at every selector call. A

descriptor is a set of keys and values, very much like a set of predefined global values. Theoretically, I

could use the scripting system to track my global values, instead of passing my entire global struct to

my different routines and storing it in the parameter handle.

To make that change, I’d have to take out all my global variables and change to reading and storing my

parameters in the scripting descriptor on every selector call. That’s a lot of work, and I didn’t feel I

would gain anything from that.

Instead, I decided to stay with my global variables, and use the scripting system to write out my final

values and read in values to override my initial global values. This made much more sense, and allows

the plug-ins to operate in a non-scripting environment, such as older versions of Photoshop.

WriteScriptParams routine
I created a routine, WriteScriptParams, that took the global values and created a descriptor to hand

back to the host.

I created a new source file, DissolveWithScripting.c, to hold the playback and recording script

functions.

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 19/79

OSErr WriteScriptParams (GPtr globals)

{

 double percent = gPercent;

 /* I'm using a double because I want to use scripting type UnitFloat with unitPercent,
 which is a double value. By using UnitFloat, my value will display in the actions palette

 with a percent sign after it. Cool! */

 PIWriteDescriptortoken = nil;
 OSErr gotErr = noErr;

 if (DescriptorAvailable())

 {

 /* DescriptorAvailable() is a macro from PIUtilities that checks to see if the

 gStuff->descriptorParameters callback parameter block is available. */

 token = OpenWriter();

 // OpenWriter() is a macro from PIUtilities that creates a new write descriptor.

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 20/79

 if (token)

 { // We got a valid token to work with. Write our keys:

 PIPutUnitFloat(token, keyAmount, unitPercent, &percent);

 /* This is a macro from PIUtilities. It requires the token to write to, the key, the
 unit (unitPercent, unitDistance, unitPixels, etc., defined in PIActions.h), and then

 a pointer to the double. */

 PIPutEnum(token, keyDisposition, typeMood, gDisposition);

 /* Another macro from PIUtilities. This writes an enumeration. It takes the token,
 the key, the list of enumerations (the type) and the actual enumeration. gDisposition

 is an unsigned32 that is either dispositionClear, dispositionCool, dispositionHot, or

 dispositionSick. Note that if these weren't defined in the terminology resource, it

 would display nothing, or garbage. The enum stored must match the keys in the enumera-

 tion list in the 'aete'.*/

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 21/79

 if (gIgnoreSelection)

 PIPutBool(token, keyEntireImage, gIgnoreSelection);

 /* Like I suggested, when you are writing boolean values, it makes the actions
 palette look cleaner if you only write them when they are in their non-default value.

 In this case, when gIgnoreSelection is true (the default is to use the selection)

 then the macro from PIUtilities writes the key and boolean value to the descriptor

 in token. */

 gotErr = CloseWriter(&token);
 /* This is a very useful routine defined in PIUtilities. When you close a token,

 it returns with a handle to a descriptor. This descriptor is then what you pass to

 the host for it to display in the actions palette (and subsequently return to you

 on playback.) CloseWriter closes the token and stores the descriptor in the

 gStuff->descriptorParameters callback parameter block, which is how a plug-in

 hands back a descriptor. It then deallocates token and sets it to NULL. Lastly, it

 sets the recordInfo parameter to dialogOptional, which is the standard return value

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 22/79

 to tell the host "Only pop my dialog when the user wants it." For a description of

 recordInfo, see the Scripting chapter of the SDK and PIUtilities.*/

 } // Close token

 } // Close DescriptorAvailable

 return gotErr;

} // End WriteScriptParams

Calling WriteScriptParams
I call WriteScriptParams in DoFinish, as that’s the last routine the plug-in executes before it com-

pletely returns to the host.

Running the plug-in and errors in scripting
Once I completed my WriteScriptParams routine, it was time to try it out to see if the terminology

resource, HasTerminology PiPL property, and WriteScriptParams routine worked. I did this by placing

an alias to the plug-in in the Photoshop plug-ins directory, deleting my preferences file (to start fresh)

and running Photoshop.

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 23/79

Figure 3 Creating a new action in the actions palette

I then opened a document and clicked the “document” icon in the actions palette, which is the “New

Action” button. I named it, and then went to my plug-in and executed it with some basic parameters.

Finally, I clicked the “stop” button in the actions palette, and checked to see if my plug-in had been

recorded.

Here is a list of issues and answers I found in debugging from this step:

My plug-in wasn’t in the filters menu.

This happened because I didn’t put the plug-in in the right directory, or because Adobe Photoshop

was loading plug-ins from the preferences file (and not scanning the directory to look for new plug-

ins), or becasue my PiPL resource wasn’t valid.

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 24/79

My plug-in didn’t get recorded.

This was usually because I wasn’t handing back a proper descriptor. I was either handing back NULL,

accidentally, or I was storing garbage data in the descriptor, which was messing everything up.

The actions palette says my plug-in’s name, but none of its parameters (such as “Using: Dissolve”
but nothing else)
This means the scripting system did not find a valid 'aete' dictionary resource, and/or it did not find

a valid reference to the resource in the HasTerminology property. It’s usually either a bad reference

number in the HasTerminology property, a bad construction of the HasTerminology property, or a

badly formed dictionary resource. On the Macintosh side, the resource compiler will complain if the

dictionary resource of Dissolve.r is not formed properly. On the Windows side, CNVTPIPL.EXE will

complain. Unfortunately, neither will complain if the keys and data you hand back in your descriptor

do not match the keys in your dictionary resource. It just won’t display.

The actions palette displays labels with no data after them, such as “Amount: %”

This was due to a messed up descriptor. I was either handing back invalid (or improper) data (such

as mixing up my keys and data types) or I was handing back no descriptor (accidentally handing back

NULL, for instance.)

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 25/79

The actions palette displays labels with scrambled data

This happened when I had different keys in my dictionary than I was storing in my descriptor, if I had

a typeInteger for keyAmount but then stored using typeFloat, or if I was storing typeText and passed

binary instead of alphanumeric information in the handle.

Actions palette with Dissolve action
Figure 4 shows the actions palette once I got the proper descriptor recorded, along with good dictio-

nary and HasTerminology resources.

Figure 4 Dissolve filter actions palette display

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 26/79

Automating the plug-in for playback
Now that the plug-in was correctly recording and displaying a descriptor, it was time to prepare it to

read that descriptor when it was handed to me, and honor those parameters.

Taking the same approach to globals as the WriteScriptParams routine, I created a ReadScriptParams

routine, with the purpose of opening, pulling keys and values out of a descriptor, and overriding the

global variables.

Boolean ReadScriptParams (GPtr globals)

{

 double x = 0;

 const double minValue = kPercentMin, maxValue = kPercentMax;

 // Used to pass minimum and maximum values for PinUnitFloat

 unsigned long percentUnitPass = unitPercent;

 // Used to pass unitPercent to PinUnitFloat

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 27/79

 PIReadDescriptor token = NULL;

 DescriptorKeyID key = NULLID;

 DescriptorTypeID type = NULLID;

 int32 flags = 0;

 DescriptorKeyIDArray array = { keyAmount, keyDisposition, NULLID };

 /* This array will be checked off as each key is read. It should return { keyNULL,
 keyNULL, NULL }. If it doesn't, then we've missed a key somewhere.

See errMissingParameter, below. */

 OSErr stickyError = noErr;

 Boolean returnValue = true;

 // ReadScriptParams returns with whether to pop the dialog or not (true = show dialog)

 if (DescriptorAvailable())

 { // If descriptorParameters callback suite is available, do this:

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 28/79

 token = OpenReader(array);

 /* Routine from PIUtilities. Opens the descriptor pointed to in
 gStuff->descriptorParameters, starts tracking keys in array, and returns a read token

 to work with. */

 if (token)

 { // Got a valid read token. Now start grabbing keys until we get NULL:

 while (PIGetKey(token, &key, &type, &flags))

 { // We got a valid (non-NULL) key. See which value it is:

 switch (key)

 { // We can receive these keys in any order, so check to see which one:

 case keyAmount:

 PIGetPinUnitFloat(token, &minValue, &maxValue, &percentUnitPass, &x);

 /* This is a routine from PIUtilities. It gets a unit-delimited value (such as
 unitPixels, unitPercent) and automatically pins it between minValue and maxValue.

 The value is returned in the last parameter, which is the address of a double

 (in this case, "x"). If the value had to be coerced (pinned to the low or high

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 29/79

 number) then this routine will return the coercedParam error, but "x" will still

 be a valid number. */

 gPercent = x; // Assign to our global

 break;

 case keyDisposition:

 PIGetEnum(token, &gDisposition);

 /* This is another routine from PIUtilities. It reads an enumerated value. Since
 our global is an unsigned32, we can have PIGetEnum store the value directly to the

 global. */

 break;

 case keyEntireImage:

 PIGetBool(token, &gIgnoreSelection);

 /* From PIUtilities, returns a boolean value. Since our global is a boolean,

 we pass its address and have it set directly. */

 break;

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 30/79

 // Ignore all other cases and classes

 }

 }

 stickyError = CloseReader(&token);

 /* CloseReader, from PIUtilities, automatically closes the read token, deallocates it,
 and stores NULL in token. It returns an error code, indicating if any errors were

 encountered during the getKey routine.

 if (stickyError)

 {

 if (stickyError == errMissingParameter)

 { } /* errMissingParameter = -1715, which means one of the keys in
 descriptorKeyIDArray was not found. Walk the array, and whatever is not

 "typeNull" is the value not found in the descriptor. For this example, I can go

 with the default values if I missed a key. If you cannot, or cannot coerce a

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 31/79

 value from the keys you did receive, then you might want to show your dialog.

 Whether or not you can show your dialog depends on PlayDialog(). See below. */

 else

 gResult = stickyError; // We got a real error. Report it.

 } // Close stickyError

 } // Close token

 gQueryForParameters = returnValue = PlayDialog();

 /* PlayDialog() examines playInfo inside gStuff->descriptorParameters and returns true
 if it is plugInDialogDisplay, which means "please display your dialog." If it is

 plugInDialogSilent, you must never show your dialog, and if it is

 plugInDialogDontDisplay, then don't display your dialog unless you need to.

 (Such as if you missed a key you need and cannot coerce.) */

 } // Close descriptorAvailable

 return returnValue; /* The global variable gQueryForParameters determines whether I need

 to pop my dialog, but I’ll return this value, as well. */

} // End ReadScriptParams

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 32/79

Calling ReadScriptParams and ValidateParameters
Calling ReadScriptParams is a little trickier. I want to call it after I’ve initialized my globals, but before

I need them. Sometimes, however, my plug-in may be called and I may never get to the DoParameters

routine, which initializes my globals. This happens in Adobe Premiere,® which only executes the plug-

in completely once, then passes its parameters in for every frame of a filmstrip. This also can occur

when a plug-in has been recorded, then the user quits Photoshop, runs it again, and executes the

action right from the palette. Literally, I may go to store values in my globals before I’ve allocated

space for them. Because of this danger, I decided to pull some of the initialization routines out of

DoParameters and create an additional routine, ValidateParameters, which checks to see if the param-

eters are valid, and if not, initializes them. That way I can call it right at the beginning of my DoStart

routine, right before I dispatch to my user interface and code which depends on my globals.

Anywhere before DoStart that I might use my globals, I need to check them for validity first. That

could be in DoParameters, DoPrepare, or DoStart:

void DoParameters (GPtr globals)

{ /* Called on selectorParameters. We may not always get here on our first iteration (for

instance, if a user created an action calling this plug-in, quit Photoshop, then ran

Photoshop again and immediately executed the action). */

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 33/79

 ValidateParameters (globals); // Check for valid parameters

 gQueryForParameters = TRUE;

 // If we're here, that means we're being called for the first time.

}

Now ValidateParameters does most of the work of DoParameters. This allows me to call it from

multiple routines, to make sure my globals are valid and at least have default values before I use them:

void ValidateParameters (GPtr globals)

{ // Called whenever parameters need to be validated before used:

 if (!gStuff->parameters)

 { // Oops. Parameters haven't been allocated yet. Do that now.

 gStuff->parameters = NewHandle ((long) sizeof (TParameters));

 if (!gStuff->parameters)

 { // Couldn't do it. Must be out of memory.

 gResult = memFullErr;

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 34/79

 return;

 }

 // Assign default global values:

 gPercent = 50;

 gDisposition = dispositionCool;

 gIgnoreSelection = false;

 gUseAdvance = false;

 gRowSkip = 1;

 } // Close gStuff->parameters

}

My DoPrepare routine does access some global variables, so I had to include a call to

ValidateParameters before I used gRowSkip:

void DoPrepare (GPtr globals)

{ // Called on selectorPrepare to allocate memory requirements

 short rowWidth = 0;

 short total = 0;

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 35/79

 long oneRow = 0;

 long inOutRow = 0;

 long inOutAndMask = 0;

 gStuff->bufferSpace = 0;

 // Check maxSpace to determine if we can process more than a row at a time

 ValidateParameters (globals);

 // Check to make sure gRowSkip has been initialized BEFORE we use it!

 total = gStuff->filterRect.bottom - gStuff->filterRect.top;

 rowWidth = gStuff->filterRect.right - gStuff->filterRect.left;

 oneRow = rowWidth * (gStuff->planes);

 // One row of data and its planes

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 36/79

 inOutRow = oneRow * 2; // inData, outData

 inOutAndMask = inOutRow + rowWidth;

 // MaskData is only one plane (alpha)

 while (((inOutAndMask * gRowSkip) < gStuff->maxSpace) &&

 (gRowSkip < total))

 gRowSkip++;

 gStuff->maxSpace = gRowSkip * inOutAndMask; // All we need

}

Finally, right at the top of DoStart, I make a call to ValidateParameters to make sure, before I use

my globals, that they’ve been at least assigned default values. Then I call ReadScriptParams to read

the keys from the descriptor, if there is one, and override the default global values with the script

parameters.

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 37/79

void DoStart (GPtr globals)

{ // Called from selectorStart. Main routine.

 ValidateParameters (globals);

 /* If stuff hasn’t been initialized that we need, do it, then go check if we've got

 scripting commands to override our settings */

 ReadScriptParams (globals);

 // Update our parameters with the scripting parameters, if available

 if (gQueryForParameters)

 { /* We got either plugInDialogDisplay or this is the first time the user has selected

 the plug-in (so I have to pop the dialog to get the initial values) */

 PromptUserForInput (globals); // Show the UI

 gQueryForParameters = FALSE;

 }

 // Rest of DoStart here.

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 38/79

Playback and recording questions: How do I know when...?
The obvious questions I had were:

“How do I know when I’m being played back?”

“How do I know when I’m being recorded?”

“How do I know when the user has selected me from the menu?”

“How do I know when the user has selected me in the actions palette?”

The answer to all of these is “You don’t.”

A plug-in has no way of knowing whether it’s being recorded, played back, or directly interacted with

by the user. This decision was made in the scripting implementation to make it as seamless with the

original interface as possible. As long as you honor the playInfo flag, you will always know whether to

pop your dialog or not. This includes if the user has clicked the Dialog On icon in the actions palette

and is playing back your plug-in, or the user has selected your plug-in directly from the menu.

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 39/79

Figure 5 Toggle dialog option in actions palette

Whether the dialog has been requested or not, it makes sense to override any globals with any script-

ing keys provided before deciding to display the dialog — that way, the user can double-click to

re-record an action and your plug-in will pop its dialog with the scripting parameters handed to it.

Don’t make the mistake (like I did, originally) of ignoring the scripting parameters just because

plugInDialogDisplay has been requested. If it has been requested from within an action, like Figure 5,

the user will expect to see the parameters from the actions palette in the plug-in’s dialog.

Now that we’re deep in the pool of scripting and you’ve gone through the simple example of the

Dissolve filter plug-in, let’s step up the complexity and look at an Import module. In my case, it was

the DummyScan example from the 3.0.5 SDK, which I renamed GradientImport, which was more in

sync with what it did.

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 40/79

GradientImport import plug-in module
So you thought the Dissolve example was torture enough? Oh no, things get much more fun when

you try to apply scripting to a module that can be controlled in a batch. Batch importing is an addi-

tional method for processing numerous images at a time. This is in addition to the old multiple

acquire mechanism that is part of the import module interface.

The batch command is available from the pull-down menu attached to the actions palette.

Figure 6 Batch dialog

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 41/79

With so many options, there are several approaches to updating an Import module:

1. Leave it alone. The scripting system will automatically call the import module for each import in a

batch. Even vanilla plug-ins can be called by the scripting system. Your dialog will be popped for

every iteration, which may not be desirable.

2. If it is a single import module, meaning it only returns one image at a time, you can update it for

scripting and record all the parameters necessary for that single import. The batch mechanism will

pass your parameters to your plug-in automatically.

3. If it is a multiple acquire module, that means that all control for opening multiple images happens

within your plug-in. You can: a) maintain detailed control over the iterative imports and use the

scripting system to call your plug-in with some default parameters, such as preferences, and/or b)

record every iterative import as another scripting event.

The GradientImport module uses the older multiple acquire mechanism. To showcase the most

robust scripting setup, I chose the last option, 3b, and decided to make the plug-in record every event

of its multiple acquire. That way a user can blast off a single action and have multiple images open.

This makes the most sense for digital cameras that cache a set of images and let the user import and

color correct multiple images.

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 42/79

Creating the GradientImport terminology resource

Assessing the user interface

The first thing I did was examine the user interface dialog to determine what parameters to represent

in the terminology resource.

Figure 7 GradientImport user interface

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 43/79

The items were:

1. An “OK” button (“Import”) which does not need to be recordable.

2. A “Cancel” button (“Done”) which does not need to be recordable.

3. An integer from 1 to 30,000 representing Rows.

4. An integer from 1 to 30,000 representing Columns.

5. A mutually exclusive enumeration, “Mode”, representing “Bitmap”, “Grayscale”, “Indexed Color”, or

“RGB Color”.

6. A boolean, “Invert”.

Below is the terminology resource I used for GradientImport.

GradientImport terminology resource

resource 'aete' (ResourceID, purgeable)

{ // Aete version and language specifiers:

 1, 0, english, roman,

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 44/79

 { // Vendor suite name:

 vendorName, // "AdobeSDK"'

 "Adobe example plug-ins", // Optional description

 ourSuiteID, // Suite id 'sdK3'

 1, // Suite code, must be 1

 1, // Suite level, must be 1

 { }, // Structure for filters

 { // Structure for all other plug-in types:

 vendorName " GradientImport", // "AdobeSDK GradientImport"

 "gradientImport multiple import", // Optional description

 { // Properties:

 "<Inheritance>",

 /* All non-filters inherit from a base class of the same name as their plug-in

 type, such as classFormat, classExport, etc. See PIActions.h. Inheritance must

 be the first property entry, even if there are no others. */

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 45/79

 keyInherits, // Always

 classImport, // Either classExport, classFormat, etc.

 "parent class import", // Optional description

 flagsSingleProperty, // Parameter flags

 // Second property:

 "multi-import", // Property name

 keyMultiImportInfo, // Unique key 'mulK'

 classMultiImportStruct, // Unique class 'mulS'

 "multiple import info", // Optional description

 flagsListProperty // Flags for a list

 }, // Close properties

 { }, // Elements (not supported)

 /* Normally you won’t need to create other classes, but since I’m going to be

 storing a list of "import information" (the values needed to create one image),

 I’m creating a class with the set of information, called "import info": */

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 46/79

 "import info", // Unique class name

 classMultiImportStruct, // Unique class 'mulS'

 "class import info", // Optional description

 { // Import info class properties:

 "rows", // Property name

 keyRows, // Standard key keyHorizontal

 typeFloat, // Property type

 "number of rows", // Optional description

 flagsSingleProperty, // Flags for property

 "columns", // Property name

 keyColumns, // Standard key

 keyVertical

 typeFloat, // Property type

 "number of columns", // Optional description

 flagsSingleProperty, // Flags for property

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 47/79

 "mode", // Property name

 keyOurMode, // Standard key 'keyMode'

 typeGradientMode, // Unique type 'grmT'

 "color mode", // Optional description

 flagsEnumeratedProperty, // Flags for property

 "invert", // Property name

 keyInvert, // Unique key 'invR'

 typeBoolean, // Property type

 "invert image", // Optional description

 flagsSingleProperty // Flags for property

 } // Close class import info

 { }, // Elements (not supported)

 } // Close non-filter classes

 { }, // Comparison operators (not supported)

 { // Any enumerations go here. We have one, typeGradientMode:

 typeGradientMode, // Unique type 'grmT'

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 48/79

 { // Enumeration listing:

 "bitmap", // Property name

 ourBitmapMode, // Unique key 'bitM'

 "bitmap mode", // Optional description

 "grayscale", // Property name

 ourGrayscaleMode, // Unique key 'gryS'

 "grayscale mode", // Optional description

 "indexed color", // Property name

 ourIndexedColorMode, // Unique key 'indX'

 "indexed color mode", // Optional description

 "rgb color", // Property name

 ourRGBColorMode, // Unique key 'rgbC'

 "rgb colormode", // Optional description

 }, // Close typeGradientMode

 } // Close enumerations

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 49/79

 } // Close vendor suite

}; // Close 'aete'

After the terminology resource was done, I added the HasTerminology to the PiPL.

GradientImport HasTerminology PiPL property

HasTerminology { ourClassID, ourEventID, ResourceID, uniqueString }

With:

#define vendorName "AdobeSDK" // Unique vendor name

#define ourSuiteID 'sdK3’ // Must follow id guidelines

#define ourClassID 'graD' // Must be unique, but can be suite id

#define ourEventID typeNull

/* Must be typeNull or the host will think it's a filter (event) instead of an import,

export, format, or selection (class) */

#define ResourceID 16000 // Typical id for plug-ins

#define uniqueString "" // Empty

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 50/79

Writing scripting parameters in GradientImport
The next step was to create the routine to pass the scripting parameters back out to Photoshop. Taking

the same approach as with the Dissolve example, I used my globals to pass their values across my

different functions, then, at the last minute, I passed the list of events back encapsulated in a descriptor.

Due to the nature of the multiple acquire mechanism, I needed a way to track the multiple imports that

would occur and then hand them back to the scripting system. I decided to do this by creating an actual

descriptor for each import, then storing all the descriptors inside an encapsulating descriptor to hand

back to the host at the very end of execution. This took the form of:

1. In DoFinish, create a descriptor and store it in a static array with a maximum of kMaxDescriptors

(in this case, 50) via CreateDescriptor().

2. In DoFinish, if multiple acquiring was not available, write the descriptor out to the host in final form

via CheckAndWriteScriptParams().

3. In DoFinalize, write the descriptor out to the host in final form via CheckAndWriteScriptParams().

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 51/79

So, DoFinish looked like this:

void DoFinish (GPtr globals)

{

 gStuff->acquireAgain = gContinueImport;

 // gContinueImport tracks whether to continue importing

 // Now create a descriptor and store it in our static array for saving later:

 CreateDescriptor(globals); // Creates and stores descriptor in next open gArray

 // If we can't finalize, then we'll have to write our parameters now:

 if (!gStuff->canFinalize)

 CheckAndWriteScriptParams(globals); // Writes script params

}

And DoFinalize:

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 52/79

void CreateDescriptor (GPtr globals)

{

 PIType mode = GetGradientMode(gLastMode);

 // Converts a global enumeration to the actual unsigned32 mode

 const double rows = gLastRows, columns = gLastCols;

 // Converting globals to doubles for PutUnitFloat to use unitPixels value

 Boolean invert = gLastInvert;

 PIWriteDescriptor token = NULL;

 PIDescriptorHandle h;

 OSErr stickyError = noErr;

 if (DescriptorAvailable())

 { // PIUtilities routine to check for descriptorParameters callbacks succeeded.

 token = OpenWriter(); // Open new write descriptor

 if (token)

 { // Got the descriptor. Go ahead and write the keys into it:

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 53/79

 PIPutUnitFloat(token, keyRows, unitPixels, &rows);

 // Puts our rows as pixels

 PIPutUnitFloat(token, keyColumns, unitPixels, &columns);

 // Puts our columns as pixels

 PIPutEnum(token, keyOurMode, typeGradientMode, mode);

 // Puts the exact enumeration (must match terminology resource!)

 if (invert) PIPutBool(token, keyInvert, invert);

 // Again, only if non-default (true), writes "with invert"

 stickyError = CloseWriteDesc(token, &h);

 /* Have to call PIUtilities CloseWriteDesc, which closes a specific token, and

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 54/79

 returns a descriptor handle in "h". If I called CloseWriter, it would close it and

 automatically store it in gStuff->descriptorParameters, which I don't want, since

 I'm trying to create a static array of descriptors before passing them to the host. */

 token = NULL; // Just in case

 if (!stickyError)

 { // As long as we didn't have an error writing:

 if (gLastImages >= kMaxDescriptors)

 { // Oops, went over our limit. Delete the last and replace it:

 gLastImages—; // Just keep replacing last one

 PIDisposeHandle(gArray[gLastImages]);

 // Dispose last handle

 }

 gArray [gLastImages++] = h; // Stick handle on array

 gArray [gLastImages] = h = NULL; // NULL out end, just in case

 } // Close stickyError

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 55/79

 } // Close token

 } // Close descriptorAvailable

} // End createDescriptor

The CheckAndWriteScriptParams routine checks for any data then calls the WriteScriptParams routine:

OSErr CheckAndWriteScriptParams (GPtr globals)

{

 OSErr gotErr = noErr;

 if (gLastImages) gotErr = WriteScriptParams(globals);

 // If we have done at least one import (gLastImages > 0), write our scripting parameters
 else gotErr = gResult = userCanceledErr;

 /* Else error out of entire loop (if we don't do this, we might end up with a single

 recorded parameter, "Import using: GradientImport" which looks ugly. */

 return gotErr;

}

OSErr WriteScriptParams (GPtr globals)

{

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 56/79

 unsigned32 count = gLastImages;

 PIWriteDescriptor token = NULL;

 OSErr stickyError = noErr;

 if (DescriptorAvailable())

 { // gStuff->descriptorParameters callbacks available.

 token = OpenWriter(); // open write descriptor

 if (token)

 { // Got our token. Write our keys.

 PIPutCount(token, keyMultiImportCount, count);

 /* A list is always preceded by its count. Note the count, and the following keys,

 are stored a keyMultiImportCount for the entire list. */

 for (count = 0; count < gLastImages; count++)

 { // Iterate through local array:

 PIPutObj(token, keyMultiImportInfo,

 classMultiImportStruct, &gArray [count]);

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 57/79

 /* PIPutObj, from PIUtilities, automatically disposes the handle and sets it to

 NULL. */

 }

 gLastImages = 0; // Reset

 stickyError = CloseWriter(&token);

 /* Closes descriptor, stores it in gStuff->descriptorParameters, sets

 plugInDialogOptional, and sets token to NULL. */

 } // Close token

 } // Close descriptorAvailable

 return stickyError;

} // End WriteScriptParams

Testing the multiple import routine
Now that the write routines were done, I was able to test the multiple import routines. I turned

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 58/79

recording on in the actions palette and imported a couple of images, one after the other, then dis-

missed the GradientImport dialog. Figure 8 shows the resulting display in the actions palette.

Figure 8 GradientImport display in the actions palette

Note how the multiple import list is presented: as its label, “Multi-import”, with its type label, “import

info” and “list” after it. Then each individual item of the list is headed with the type label “import

info”. The first image is a 256x257 RGB image; the second image is a 100x101 grayscale inverted

image. Again, I only display a boolean when it’s in its non-default (“with invert” only, as opposed to

“without invert” and “with invert”). Another nice feature is the display of the word “pixels” after the

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 59/79

“Rows” and “Columns” entries. This is thanks to PutUnitFloat and unitPixels.

Playback of scripting parameters for GradientImport
Now that I had GradientImport correctly recording parameters, it was time to modify it to read back

parameters. This, too, is complicated, because it requires reading from a list and dispatch parameters

through the multiple acquire loop, iterating through the list. I decided to break it out into this logic:

1. At DoPrepare, open any descriptor handed to me by the host and see if there was a list in there,

via OpenScriptParams.

2. At DoStart, read the next descriptor object in the list via ReadScriptParams and assign all its keys

to globals via SwitchScriptInfo.

3. In DoStart, as soon as the dialog is asked for, or if there is an error, we no longer need to iterate

through the list. Close it via CloseScriptParams and continue to create our own array to pass

back later.

void DoPrepare (GPtr globals)

{

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 60/79

 gStuff->maxData = 0;

 if (!WarnBufferProcsAvailable ())

 gResult = userCanceledErr; // Exit. Already displayed alert.

 // If finalization is available, we will want it:

 gStuff->wantFinalize = true;

 ValidateParameters (globals);

 /* This should look familiar. Same functionality, but instead, checks variables

 pertinent to GradientImport for default values and allocation, if needed. */

 // Now see if the scripting system has passed us anything:

 OpenScriptParams (globals);

}

void DoStart (GPtr globals)

{

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 61/79

 int16 j = 0; // Used later

 // Insist on having the buffer procs:

 if (!WarnBufferProcsAvailable ())

 {

 gResult = userCanceledErr; // Should probably display err

 return;

 }

 // Assume we won't be coming back around for another pass unless explicitly set:

 gStuff->acquireAgain = gContinueImport = false;

 // Validate our globals then override them with scripting parameters, if available:

 ValidateParameters (globals);

 ReadScriptParams (globals);

 if (gQueryForParameters)

 { // Open our dialog. If it's already up, this returns with no err:

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 62/79

 if (!OpenOurDialog (globals))

 { // Couldn't open our dialog. Abort! Abort!

 gQueryForParameters = false;

 CloseScriptParams(globals); // Close up the open descriptor!

 gResult = memFullErr; // Return with memory full error

 return;

 }

 // So far so good. Now dispatch our dialog routines:

 if (!RunOurDialog (globals))

 { // User canceled. Close everything up.

 gQueryForParameters = false;

 CloseOurDialog (globals); // Deallocates dialog

 CloseScriptParams(globals); // Closes open descriptor

 gResult = userCanceledErr; // Exit without err

 return;

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 63/79

 // Rest of DoStart here.

With DoPrepare and DoStart set up, there were four routines to be created. OpenScriptParams, to open

the descriptor; ReadScriptParams, to read the next object in our list; SwitchScriptInfo, which reads

keys from the object and overrides the global values; and CloseScriptParams, to close and tidy up the

open descriptor handed to the plug-in from Photoshop.

OpenScriptParams was one of the easier ones, as all it had to do was watch for the count key and find

it in the descriptor handed in by the host:

void OpenScriptParams (GPtr globals)

{

 DescriptorKeyID key = 0;

 DescriptorTypeID type = 0;

 int16 loop = 0;

 int32 flags = 0;

 Boolean leaveEarly = false;

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 64/79

 if (DescriptorAvailable())

 { // Descriptor procs available. Now open the descriptor:

 gToken = OpenReader(NULL);

 /* Normally would pass an array indicating the expected keys. Problem is I don't

 know how many items are in the list until I open it. Therefore, I'm passing NULL to

 indicate to the scripting system not to bother with a key array list. */

 if (gToken)

 { /* Since we'll be reading from this descriptor in numerous routines, I store the

 token in a global variable. */

 while (!leaveEarly)

 { // Until we find our key or run out of keys in the descriptor, we'll look for it:

 leaveEarly = PIGetKey(gToken, &key, &type, &flags);

 switch (key)

 { // Only interested in one case, keyMultiImportCount:

 case keyMultiImportCount:

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 65/79

 PIGetCount(gToken, &(gCount));

 leaveEarly = true;

 break;

 /* I'm ignoring all other keys. All I'm looking for is the list, which will be

 preceded by a count key. Once I find that, I drop out, eventually to be called

 by the read routine. */

 } // Close switch

 } // Close leaveEarly

 } // Close gToken

 gQueryForParameters = PlayDialog();

 // If true, show the dialog

 } // Close descriptorAvailable

} // End OpenScriptParams

The ReadScriptParams routine needs to take up where the OpenScriptParams routine left off: There is

an open descriptor, gToken, and it is sitting on an object which is another descriptor. I need to take

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 66/79

that descriptor, open it, parse all its keys, and override my globals. That happens in SwitchScriptInfo.

void ReadScriptParams (GPtr globals)

{

 int16 loop = 0;

 int32 flags = 0;

 DescriptorTypeID type = 0;

 DescriptorKeyID key = 0;

 PIDescriptorHandle subHandle = NULL;

 PIReadDescriptor subToken = NULL;

 OSErr stickyError = noErr;

 DescriptorTypeID passType = classMultiImportStruct;

 // GetObj needs to know what class type to expect

 DescriptorKeyIDArray subKeyIDArray =

 { keyRows, keyColumns, keyOurMode, NULLID };

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 67/79

 /* These are all expected. If keyInvert is there, it's handled, just not checked off the

 list. If I put it in the list, then the list will generally always return with an error,

 saying it didn't get keyInvert. I'd rather have it be a pleasant addition than always

 expecting it and rarely getting it. */

 if (DescriptorAvailable())

 { // Have descriptor procs.

 if (gToken)

 { // Global token is valid

 if (gCount > 0)

 { // Have another item waiting
 gLastInvert = false;

 /* Default is no invert. If we get the key, we'll override the default.

 Otherwise, we set it here, just in case we have an error below and don't get

 a chance to set it one way or the other. */

 PIGetObj(gToken, &passType, &subHandle);

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 68/79

 /* From PIUtilities, reads an object from descriptor gToken into subHandle of

 type passType */

 subToken = OpenReadDesc(subHandle, subKeyIDArray);

 /* Can't use OpenReader() because that automatically uses the descriptor passed

 in gStuff->descriptorParameters. Instead, we use a subroutine, OpenReadDesc, which

 opens handle subHandle and tracks array subKeyIDArray, returning its descriptor

 token. */

 if (subToken)

 { // Was able to open descriptor.

 SwitchScriptInfo (globals, subToken);

 // Reads the keys from descriptor subToken and overrides globals

 stickyError = CloseReadDesc(subToken); // Done

 subToken = NULL; // Just in case

 PIDisposeHandle(subHandle); // Dispose handle

 subHandle = NULL; // Just in case

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 69/79

 if (stickyError)

 { // Error occurred while reading keys

 if (stickyError == errMissingParameter)

 {} /* -1715 missing parameter. Walk keyIDArray to find which one. */

 else

 gResult = stickyError; // Real error occurred

 }

 gContinueImport = true; // We got something, so keep going!

 } // Close subToken

 gCount-; // One less in list

 } // Close count

 if (gCount < 1)

 CloseScriptParams(globals); // That was the last one! Close it up!

 } // Close readToken

 } // Close descriptorAvailable

} // End ReadScriptParams

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 70/79

The SwitchScriptInfo routine reads keys out of the descriptor, overriding their global values:

void SwitchScriptInfo (GPtr globals, PIReadDescriptor token)

{

 DescriptorKeyID key = 0;

 DescriptorTypeID type = 0;

 int16 loop = 0;

 int32 flags = 0;

 int32 count = 0;

 double rows = kRowsMin, columns = kColumnsMin;

 // Default value for rows and columns

 PIType mode = ourRGBColorMode;

 // Default value for mode is RGB

 Boolean invert = false;

 // Default for invert is false

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 71/79

 const double minRows = kRowsMin, maxRows = kRowsMax,

minColumns = kColumnsMin,

maxColumns = kColumnsMax;

 /* PinUnitFloat will pin a value between minimum and maximum bounds, but, since those

 values are passed as addresses, I assign these locals to the constant values */

 unsigned long pixelsUnitPass = unitPixels;

 // Have to pass address of unsigned long for unitPixels, so assign local to constant

 while (PIGetKey(token, &key, &type, &flags))

 { // Continue while there are more keys

 switch (key)

 {

 case keyRows:

 PIGetPinUnitFloat(token, &minRows, &maxRows,

 &pixelsUnitPass, &rows);

 /* Pins the value between min and max, returning it in "rows". It will return

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 72/79

 coercedParam if it had to coerce the value to between min and max */

 gLastRows = rows; // Assign local double to global short

 break;

 case keyColumns:

 PIGetPinUnitFloat(token, &minColumns, &maxColumns,

 &pixelsUnitPass, &columns);

 // Pins columns between min and max

 gLastCols = columns; // Assign local double to global short

 break;

 case keyOurMode:

 PIGetEnum(token, &mode);

 // Returns an enum — must be the same as terminology enum list

 gLastMode = GetPlugInMode(mode);

 // Maps enum to ordinal

 break;

 case keyInvert:

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 73/79

 PIGetBool(token, &invert); // Returns boolean

 gLastInvert = invert; // Assigns boolean to global

 break;

 } // Close switch

 } // Close getkey

} // End SwitchScriptInfo

CloseScriptParams is called from multiple places whenever there is an error or the list is finished and

the descriptor passed to the plug-in by Photoshop should be closed. Note that the descriptor passed

by the host is a handle, and is the plug-in’s responsibility to deallocate. If I didn’t call this routine,

we’d have a memory leak, unless I passed the exact same descriptor back to the host. But I don’t pass

the same descriptor back, because, even while this open descriptor is being read and used to do

multiple imports, the CreateDescriptor routines are creating descriptors to pass back to the host in

WriteScriptParams. Ergo, since I’m putting my own descriptor in gStuff–>descriptorParameters,

I have to call CloseScriptParams, at least once, to make sure that the host descriptor is disposed.

void CloseScriptParams (GPtr globals)

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 74/79

{

 OSErr stickyError = noErr;

 if (DescriptorAvailable())

 { // Descriptor procs available

 if (gToken)

 { // Have our global token

 stickyError = CloseReader(&gToken);

 // Closes token, deallocates memory, and sets it to NULL

 if (stickyError)

 { // Oops, got an error

 if (stickyError == errMissingParameter)

 {} // -1715 missing parameter. Sort of late, by now.

 else

 gResult = stickyError; // Real error occurred

 }

 } // Close token

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 75/79

 } // Close descriptorAvailable

 gCount = 0; // Reset global list count

 gContinueImport = false; // Finish importing and exit

} // End CloseScriptParams

Playing back GradientImport
Now that the playback functions have been completed, the last task was to record some actions and

play them back to make sure the parameters were honored. It’s pretty cool to create a single action

that contains multiple imports inside of it, and you can see how the actions palette can get pretty full.

Other issues and future implementation

Opaque data
You can see that the actions palette can fill up pretty fast with large multiple imports. Opaque data is

the term for information that you don’t want displayed in the actions palette. This is sometimes useful

because the data: 1) is serial or registration information; 2) is complex; 3) cannot be represented to

the user in the actions palette; 4) simply looks yucky.

In PIActions.h there is a key, "keyDatum" (I couldn’t use keyData, it was taken) that displays in the

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 76/79

actions palette as:

Data: "..."

Which is an opaque display. keyDatum (and other opaque keys) must be stored as textual data. That

means that if you want to store an array of hexadecimal values, for instance, you must convert them

to their textual representation. To store:

$01 $02 $03 $04 $05

You must store it as:

"0102030405"

Or some such similar representation. The reason for this, and the reason there are no opaque keys

that simply do not display at all in the actions palette, stems from the user interface issues of the

AppleScript and AppleEvent automation architecture. Without getting into too much detail, it has to

do with the fact that the user side of the architecture is made so that a user may pass any English-like

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 77/79

string into the automation system to be parsed, such as:

tell application "Photoshop" to do Gaussian Blur with Radius™ 2.0

Opaque data breaks this mold, but not completely, because opaque data, by its definition, has no

English equivalent. (Otherwise, you would just display it in the actions palette like any other param-

eter.) Because strings and sentences can be passed as automation and event requests, even the opaque

data must be able to be typed and passed as a simple sentence. So, by this example, the user could pass

the event:

tell application "Adobe Photoshop 4.0" to do GradientImport with data "0102030405"

There is more detail on this in the AppleScript and AppleEvent Inside Macintosh books, and references

to them in the Photoshop SDK Guide.

External scripting
Scripts can be controlled via OLE on Windows and AppleScript on Macintosh. Documentation on

triggering scripts externally is in the Photoshop SDK Guide in the scripting chapter and in Appendix B:

OLE Automation.

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 78/79

Saving filenames
What isn’t covered in the scope of this article, but is an interesting scripting question, is what to do

with filenames when saving them as scripting keys. I recommend looking at the example Format

module in the SDK. The basic logic used by Photoshop for converting the filename dialog into a

scripting parameter, and, therefore, the logic I recommend you use, is:

1. If the user types a new name, save that entire path.

2. If the user leaves the default name, save the path to the folder, but append the current filename to

the path when saving.

More detail about this is can be found in the SDK guide and the Format example.

Future features
Photoshop 4.0 scripting is available to all plug-in module types, and, as stated, it can control non-

scripting aware plug-ins by executing them as if a user had selected them.

We recommend that you update your plug-in to be Photoshop 4.0 scripting-aware. Because execute-

only plug-ins pop their user interface every time they’re called from an action, a user running a batch

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe Photoshop • PAGE 79/79

on a folder of hundreds of files is going to have a much more positive experience, and therefore prefer,

working with plug-ins that have been made scripting-aware.

I recommend playing with the batch control mechanism to get a good understanding of how it

interacts with the user, and also to look at how Save and Open dialogs are handled, as far as scripting

is concerned.

Next issue I’ll take a look at some of the new plug-in types introduced in Photoshop 4.0 and all the

new API features related to those, including color picker plug-ins and the new selection modules. §

✆ADA Technical Journal Volume 1, Number 1

D E V E L O P I N G W I T H

A d o b e P a g e M a k e r

PageMaker Column • PAGE 1/11

The PageMaker 6.5 API
PageMaker 4.2 was the first version of PageMaker to support plug-ins (then known as “Additions”).

Plug-ins and external applications used commands and queries to communicate with PageMaker and

were the underlying mechanism for the PageMaker scripting language. PageMaker 5.0 and 6.0 saw the

addition of new commands and queries, as well as the removal of obsolete items, but the architecture

of the API was unchanged.

With the release of PageMaker 6.5, Adobe has kept the commands and queries API, added a new API

architecture beside it, and made the relationship between the application and plug-ins more dynamic

in nature. The new APIs, collectively referred to as the component interfaces, open up entire new

areas of the application to plug-in developers. In this article, we’ll discuss how these new APIs enable

richer, more powerful plug-ins.

✆ADA Technical Journal Volume 1, Number 1

PageMaker Column • PAGE 2/11

The pieces of the PageMaker API
The PageMaker API can be divided roughly into two pieces: the component interfaces, and the com-

mand and query interface. The component interfaces give you access to the basic areas of functional-

ity within the PageMaker application (such as the print engine, and the window manager), and the

command and query interface provides a programming interface to the scripting engine in

PageMaker. While the command and query interface is still a vital part of the PageMaker plug-in

architecture, it is the component interfaces that give you the additional services, beyond what is

available through scripting. You will use the component interfaces together with the commands and

queries, in almost all of the plug-ins that you might create.

The architecture of the PageMaker API
In earlier versions of PageMaker, plug-ins were limited to modal interfaces. In the modal scheme, a

user invokes a plug-in from the plug-ins menu and the plug-in displays a dialog the user must dismiss

before continuing.

In PageMaker 6.5, the modal interface restriction is gone. You can create floating windows that are

completely integrated with PageMaker software’s windows, or plug-ins that respond to PageMaker

✆ADA Technical Journal Volume 1, Number 1

PageMaker Column • PAGE 3/11

events, rather than being invoked by the user. The windows can be tool palettes, informational dis-

plays, or new types of windows designed for specific tasks.

The PageMaker 6.5 API is the first Adobe SDK based entirely on C++. Starting in version 6.0, the

PageMaker Class Library offered a C++ framework for commands and queries (for an overview of the

PageMaker Class Library, see the ADA news, volume 5, number 2). This framework is now the pre-

ferred method for executing commands and queries. The new component interfaces, which open up

new areas of PageMaker such as the window interface, are based on C++ objects.

The Component Interface
The component interface is the main new feature of the PageMaker 6.5 API. It provides access to

events, windows (non-modal), the print stream, more efficient object and text access, converting and

saving images, support for frames, and publishing custom components. The component interfaces are

provided to a plug-in as sets of related functions packaged into C++ classes. For example the

CIWindow interface contains functions for creating, showing, hiding, and destroying windows, and the

CIObjectAccess interface provides a high performance interface for processing the objects in a

✆ADA Technical Journal Volume 1, Number 1

PageMaker Column • PAGE 4/11

PageMaker publication. In some cases the same functionality is available through the new component

interface API and through the old command and query API. Where the two APIs overlap, you will

want to use the component interfaces for better performance.

The component interface itself is extensible. You can create new components and add their interfaces

to the application through the CIInterfaceManager and use them as you would any other component

interface. Creating a new component is outside the scope of this article, for more information, take a

look at the ExportInter face sample project in the PageMaker SDK.

Using Component Interfaces
To use one of the interfaces you must first acquire the interface from PageMaker. PageMaker returns a

pointer to an interface object (a C++ object). When you are finished with it, you must notify

PageMaker to release the interface object.

Acquiring the interfaces is accomplished through the interface manager:

PMErr main(PMMessage *pMsg)

{

CIInterfaceManager *theInterfaceMgr = NULL;

✆ADA Technical Journal Volume 1, Number 1

PageMaker Column • PAGE 5/11

CIObjectAccess *myObject = NULL;

PMErr errorCode, objectError;

// Get the interface manager from the PMMessage struct,

// The PMMessage struct is found in PMTypes.h

theInterfaceMgr = pMsg->pInterfaceMgr;

if (pMsg->opCode == kPMDoInvoke)

{

// Acquire the CIObjectAccess interface…

errorCode = gInterfaceMgr->AcquirePMInterface(PMIID_OBJACC, (void **)&myObject);

if (errorCode == CQ_SUCCESS)

{

// The interface has been acquired and can be used.

PMOBJ_REC pageItem;

objectError = myObject->GetFirstObject(kGetSelectedObjectsOnly, &pageItem);

if (objectError == CQ_SUCCESS)

{

✆ADA Technical Journal Volume 1, Number 1

PageMaker Column • PAGE 6/11

//Normally, you would actually do something with the objects

// But it isn’t necessary for this example

…

objectError = myObject->GetNextObject(&pageItem);

…
// Since GetFirstObject was called, RestorePage MUST be called.

objectError = myObject->RestorePage();

}

else

{

//Error! Could be a simple CQ_OBJACC_NO_MORE_OBJECTS error

// which means that there isn’t an object to return.

}

gInterfaceMgr->ReleasePMInterface(myObject);

}

}

✆ADA Technical Journal Volume 1, Number 1

PageMaker Column • PAGE 7/11

// For this example we’ve returned errorCode, because

// the interface may not be available.

return errorCode;

}

The AcquirePMInterface method will set up the interface pointer and return the CQ_SUCCESS value, or

it will return an error code. If an error is returned, you should not call ReleasePMInterface.

While the example above skips over the details of writing a plug-in, it is meant as an example of

acquiring, using and releasing an interface.

Event Notification
There are two types of events that a plug-in can receive: PageMaker events and system events. While

a plug-in will register for specific PageMaker events, the systems events are provided as a part of the

support for creating new windows. Typical PageMaker events include, creating new objects in a

PageMaker publication, selecting or deselecting an object, and changing the view size. In total, there

are over 120 defined PageMaker events.

✆ADA Technical Journal Volume 1, Number 1

PageMaker Column • PAGE 8/11

PageMaker plug-ins can register for one or more of the PageMaker events. Whenever an event occurs,

PageMaker calls all plug-ins that have registered for that event. You can then use commands, queries,

or component interfaces to respond to the event.

The CIBasic interface is used to register for events.

gInterfaceMgr->AcquirePMInterface((unsigned long)PMIID_BASIC, (void **)&basic);

basic->RegisterPMEvent((PMEventID) PMEVT_OPENPUB_BEFORE);

gInterfaceMgr->ReleasePMInterface(basic);

The example above registers for the PMEVT_OPENPUB_BEFORE event, which is sent after the user (or

another plug-in) has selected a publication to open, but before it is actually opened. You will find that,

like the PMEVT_OPENPUB_BEFORE event, many of the events end with _BEFORE or _AFTER. The suffix

attached to the event name indicates whether the notification comes before the event occurs or after.

The _BEFORE events can be used to interrupt PageMaker and replace its functionality. This is accom-

plished by registering for the desired _BEFORE event, and in response to the event, handling the event

and returning the wasHandled flag as true. (There is a good example of doing just this in the OpenCopy
sample plug-in that is a part of the SDK.)

✆ADA Technical Journal Volume 1, Number 1

PageMaker Column • PAGE 9/11

A plug-in can remove itself from the notification list for a particular event using the

UnregisterPMEvent function.

Commands and Queries
Introduced in PageMaker 6.0, the PageMaker Class Library is now the preferred way to perform

commands and queries. The PageMaker Class Library has made writing PageMaker plug-ins far easier,

allowing you to concentrate on the functionality of your plug-in rather than the details of communi-

cating commands and queries with PageMaker.

The enhanced commands and queries API provides access to new PageMaker 6.5 features including

layers, frames, and save image.

Commands and queries are also used to communicate with PageMaker through DDE or AppleEvents.

PageMaker Scripting
In earlier versions of PageMaker, scripting was limited to issuing one or more commands, providing

basic automation features to set up or modify publications. PageMaker 6.5 contains an enhanced

scripting language to create sophisticated, and even interactive scripts. The scripting language includes

✆ADA Technical Journal Volume 1, Number 1

PageMaker Column • PAGE 10/11

variables, loops, and conditional statements designed to be easily written by end users or developers.

The new scripting language is a great tool for testing plug-in ideas, or providing full solutions to

PageMaker users. For more information about PageMaker scripting, check out the Adobe Press title:

Adobe PageMaker Scripting: a guide to Desktop Automation, by Hans Hansen (ISBN: 1-56830-318-1).

The Adobe Press Web pages are available at http://www.adobe.com/adobepress/.

Programming documentation
The documentation for PageMaker 6.5 has been significantly updated over the 6.0 version. All of the

commands and queries are documented in their C++ form, (for 6.0 they were documented in their

scripting form.)

The documentation is provided in HTML format for easy navigation and is optimized for onscreen

use. There are hundreds of commands, queries, and components each of which is relatively self-

contained, but which are related to other commands and queries. HTML provides unparalleled

hyperlinking support; the documentation contains approximately 5000-7000 hyperlinks among over

500 HTML files.

http://www.adobe.com/adobepress/

✆ADA Technical Journal Volume 1, Number 1

PageMaker Column • PAGE 11/11

The documentation has been designed to be used online, and a Web browser is an excellent tool for

this. As a bonus, the HTML documentation for commands, queries, and components are hyperlinked

to the actual header and source files, seamlessly merging the actual SDK source code with the docu-

mentation.

More to come
In the next issue we will cover the life span of a PageMaker plug-in, from the when the user starts the

application to exit. §

✆ADA Technical Journal Volume 1, Number 1

P o s t S c r i p t L a n g u a g e
T e c h n o l o g i e s

PostScript Language Technologies • PAGE 1/7

This month’s column offers sample code for listing the writeable storage devices available on your

destination printer. The device name, its search order, and the amount of available space is given for

each listed device. The code supports both Level 1 and Level 2 devices.

The sample code provides a starting point for applications or drivers that need to write files, forms,

fonts, or other resources to a printer’s file system, and want to know more detail about that file system.

Example 1 Code To List Writeable Devices

%!PS-Adobe-3.0 Query

%%Title: (query for writeable storage devices, search order, space available)

%%?BeginQuery: WriteableDeviceInfo

(——List of writeable storage devices with search order and space——\n) print

/str 128 string def

✆ADA Technical Journal Volume 1, Number 1

PostScript Language Technologies • PAGE 2/7

% L2? determines whether a device has language level >= 2.

/L2? {

 /languagelevel where {

 /languagelevel get 2 ge

 }{

 false

 } ifelse

} bind def

% The following procedure is called in a Level 2 environment

% to determine if a given device is writeable.

/mayWrite { % devname mayWrite true/false

✆ADA Technical Journal Volume 1, Number 1

 /dstats exch currentdevparams def

 dstats /Writeable known {dstats /Writeable get}{false} ifelse

 dstats /Mounted known {dstats /Mounted get}{false} ifelse

 dstats /HasNames known {dstats /HasNames get}{false} ifelse

 and and

} def

% The following prints information about a given device to the screen.

% It is called in a Level 2 environment.

/showAvail { % devname showAvail -

 dup print () print

 dup currentdevparams /SearchOrder get str cvs print () print

 currentdevparams /Free get str cvs print (\n) print

} def

% mayWrite1 is the equivalent of mayWrite to be called in a Level 1

% environment.

PostScript Language Technologies • PAGE 3/7

✆ADA Technical Journal Volume 1, Number 1

/mayWrite1 { % Devname mayWrite1 true/false

 devstatus % False if devname not found, list otherwise

 {

 pop % Don't want size

 pop % Won't check free now

 pop % Or search order

 pop % Or removable

 and % Mounted together with hasNames

 and % And writeable

 exch pop % We're not checking searchable

 }

 {false}

 ifelse

} def

% showAvail1 performs the equivalent tasks as showAvail, but for a

% Level 1 environment.

PostScript Language Technologies • PAGE 4/7

✆ADA Technical Journal Volume 1, Number 1

/showAvail1 { % devname showAvail1 -

 dup print () print

 devstatus

 pop % Already checked can call devstatus

 pop % Size

 exch str cvs print () print % SearchOrder

 str cvs print (\n) print % FreePages

 5 {pop} repeat

} def

L2?

{

 % Use resourceforall

 (Using Level 2 resource machinery to list download target devices\n) print

 (*)

 {

 dup mayWrite {showAvail}{pop} ifelse

 } 128 string /IODevice resourceforall

PostScript Language Technologies • PAGE 5/7

✆ADA Technical Journal Volume 1, Number 1

}

{

 % Try devforall

 systemdict /devforall known

 {

 (Using Level 1 systemdict operator devforall\n) print

 {dup mayWrite1 {showAvail1}{pop} ifelse} 128 string

 devforall

 }

 {

 (devforall not available, presumably no disk available\n) print

 }

 ifelse

}

ifelse

(End of query. \n) print flush

%%?EndQuery: Unknown

%%EOF

PostScript Language Technologies • PAGE 6/7

✆ADA Technical Journal Volume 1, Number 1

Output from Example 1
Below is an example of the output that was received by stdout when this code was sent to a Level 2

printer with two writeable drives. Notice that neither of the drives is named %disk0%. When parsing

the backchannel output from this (or any) code, don’t make any assumptions about how the informa-

tion will be distributed among packets. For instance, even the use of flush will not guarantee that one

line will appear in one packet.

(——List of writeable storage devices with order and space——)

Using Level 2 resource machinery to list download target devices

%disk3% 1 101614

%disk1% 0 529477

End of query.

PostScript Language Technologies • PAGE 7/7

✆ADA Technical Journal Volume 1, Number 1

D E V E L O P I N G W I T H

A d o b e I l l u s t r a t o r

Developing with Adobe Illustrator • PAGE 1/11

Taking Advantage of the Adobe Illustrator 6 API
I’m about to let you in on a heavily guarded secret regarding Adobe Illustrator 6.0. The improvements

and feature upgrades were done via plug-ins only. The only changes to the main application were

done to the API (application programming interface) itself, so that additional plug-ins and plug-in

types would be supported.

Adobe Illustrator 6.0’s API is one of the most advanced APIs for any software, allowing plug-in

developers to add features by creating model dialog-based functions, floating palettes, and even tools

anywhere within Adobe Illustrator software. The sad thing, in my opinion, is that up until this point,

few software developers (with the exception of Alien Skin Stylist™ and Extensis VectorTools,™ see

sidebar) have really taken advantage of all of these fantastic capabilities.

Ted Alspach is the author of several books, including the bestselling Macworld Illustrator 6 Bible, KPT Studio Secrets, The Complete Idiot’s
Guide to Photoshop, Illustrator Filter Finesse, Photoshop Complete and the just-released Acrobat 3 Visual QuickStart Guide. Check out his
Mac-produced Web page at www.bezier.com, home to VectorVille (www.bezier.com/vectorville), a site for vector users and developers.

www.bezier.com
www.bezier.com/vectorville

✆ADA Technical Journal Volume 1, Number 1

Maybe you’re asking yourself, why bother with a plug-in when I can just create an application that

does what I want? Why bother spending the time to learn the API? For starters, creating a plug-in

within Adobe Illustrator allows you to take advantage of Adobe Illustrator software’s file importing/

exporting options (Adobe Illustrator supports all of Photoshop software’s pixel formats, as well as

Illustrator native, EPS and PDF files), and printing. You don’t need to worry about coding all of that

boring stuff, but instead you get to dig into the meaty stuff that’s really fun to create; and to use. The

Adobe Illustrator API makes it easy to perform almost all of Adobe Illustrator software’s functions

and features through simple calls.

Even better, the SDK can be found on the Adobe Illustrator 6 CD-ROM, with plenty of sample plug-

ins and source code.

Alien Skin Stylist & Extensis VectorTools
Alien Skin Stylist is a plug-in that not only provides complete text and object styles for Adobe Illustrator
objects, but also a system for creating what Alien Skin calls “Complex Constructions,” sets of styles that can be
applied to paths. Most Complex Constructions contain several paths that are updated live when the Stylist
plug-in is installed.

Extensis has announced and shown a brand new collection of plug-ins for Adobe Illustrator, VectorTools 2.0.
With the exception of Extensis’ trademark toolbars and tips, tricks and techniques dialog box, the other seven

Developing with Adobe Illustrator • PAGE 2/11

✆ADA Technical Journal Volume 1, Number 1

plug-ins for Illustrator were created using the Illustrator 6 API. While VectorTools doesn’t take full advantage
of the API, it does show some of its powerful capabilities, including palettes and tools. Some of the more
interesting plug-ins (from a developer’s point of view):

VectorLibrary is a floating palette that stores Illustrator objects. Using the Macintosh drag manager, the API
allows objects to be dragged in and out of the palette without negatively affecting the artwork in the
document.

VectorFrame is another floating palette that provides an interactive slider that places frames on selected
objects. The slider adjusts the frame (an Adobe Illustrator path) in real time.

VectorObjectStyles applies tagged styles to Adobe Illustrator paths.

VectorNavigator is a floating palette with two functions. First, it shows the entire existing illustration within
the palette, scaled to the size of the palette, with a red rectangle showing what is currently displayed within
the document window. Second, it allows the user to move around within the document by dragging the red
rectangle around the palette.

VectorMagicWand is clearly the most impressive (both technologically and otherwise) of the set. The plug-in
creates a tool that is added to the Plug-In tools palette. This tool is used for selecting paths that are similar to
the path that is being clicked on with the tool. The amount of similarity is controlled by several sliders on a
floating palette (which can be shown/hidden either via menu or by double-clicking on the tool). In addition,
the palette contains a button that is used to select and deselect the MagicWand tool.

Developing with Adobe Illustrator • PAGE 3/11

✆ADA Technical Journal Volume 1, Number 1

Plug-in types
There are three major plug-in types in Adobe Illustrator software: menu selectable modal dialogs,

floating palettes, and tools.

Modal Dialogs are the standard “filter” type of plug-ins common to Photoshop software. The user

selects a menu item, and a dialog box appears. MetaTools’ Vector Effects, CSI Socket Sets and

BeInfinite’s InfiniteFX use modal dialog boxes for their plug-ins. Versions 5.0 and 5.5 of Adobe

Illustrator only supported modal dialog box-based plug-ins, and they were only accessible via a

submenu off the Filter menu. Version 6 supports putting menu items in any menu, not just the

Filter menu.

Floating Palettes are fully supported by Adobe Illustrator 6. If you use the API to create a palette in

Adobe Illustrator, the palette is treated as a standard Adobe Illustrator palette, following the behavior

of other palettes in Adobe Illustrator, including snapping to the edges of other palettes, snapping to

the document window, and snapping to the edges of the screen. Palettes you create via the API are

also hidden and shown automatically when the user presses the Tab key.

Developing with Adobe Illustrator • PAGE 4/11

✆ADA Technical Journal Volume 1, Number 1

Tools are plug-ins that add tools to the Plug-in tools palette. Tools can interact with Adobe Illustrator

objects in various ways. The Spiral, Polygon, Star and Twirl tools were originally modal-based plug-ins

(in version 5.0 and 5.5 of Adobe Illustrator), now transformed into tools with added functionality

(double-clicking on the tools in the plug-in tools palette displays a dialog box that is eerily similar to

the original filters modal dialog).

Suites
One of the most useful API innovations is that of suites. Adobe Illustrator 6 has several integrated

suites that provide loads of additional functionality. The two suites that you might find especially

helpful are the Path Construction Suite and the Shape Construction Suite. These two suites assist in

creating and adjusting paths, and are especially helpful with distortion filters.

The most striking difference between the 5.0/5.5 distortion filter Twirl and its 6.0 counterpart (besides

the fact that it is also a tool) is the way it works. Twirling a star in versions 5.0/5.5 resulted in a twirl-

ing of points only; the path shape was only affected in that the line segments followed the path. The

Adobe Illustrator 6 Twirl filter (and tool) uses the Shape Construction Suite to adjust the entire path,

not just the selected points, resulting in a smooth twirling effect.

Developing with Adobe Illustrator • PAGE 5/11

✆ADA Technical Journal Volume 1, Number 1

The SDK Clock
There’s one plug-in located in the SDK folder (on the Adobe Illustrator 6 CD-ROM) that manages to

show some of the incredible power of Adobe Illustrator software’s API.

To install the plug-in, drag it out of the SDK folder on the Adobe Illustrator 6 CD-ROM and place it

in your Adobe Illustrator 6 application’s plug-ins folder. Launch Adobe Illustrator. The Object menu

will contain two new items: Create Clock and Pause Clock.

Choose Create Clock from the Object menu. A gray clock appears in the center of your document,

with a ticking second hand. When I first saw this, I thought, “Cool. Now I can see the time in Adobe

Illustrator.” I didn’t grasp what was happening; the clock was made of Adobe Illustrator paths. The

plug-in actually creates animated Adobe Illustrator paths, in this case a set of paths that keep the time.

A few cool things you can do with the clock:

• Save the document and close it. Open it again a few hours, days, or months later, and you’ll see that

it has been keeping time correctly.

• Select the second hand and change the fill color...while the second hand ticks its way around the

center of the clock.

Developing with Adobe Illustrator • PAGE 6/11

✆ADA Technical Journal Volume 1, Number 1

• Pause the clock (using the command in the Object menu) and Option-copy it several times. Change

the position of the hour hands by rotating them around the center of each clock slightly. When you

Resume the clock running, you’ll have a virtual (and accurate) set of clocks displaying the time in

multiple time zones.

• Pause the clock and use any of Adobe Illustrator software’s tools to distort the paths, then Resume

the clock.

• Finally, use the clock as a time stamp by shrinking it down and placing it in the corner of each Adobe

Illustrator document.

These are just the possibilities from a user’s standpoint. From a developer’s point of view, this opens

up a whole new area of plug-in development.

Plug-Ins I’d like to See
There are all sorts of plug-ins that could be created for Adobe Illustrator, now that it has such a

powerful API. Here are a few ideas of undeveloped plug-ins that Adobe Illustrator users have been

clamoring for:

Developing with Adobe Illustrator • PAGE 7/11

✆ADA Technical Journal Volume 1, Number 1

3D Transformation tool, Find/Replace, Live Blends, and an Arc Tool. Macromedia FreeHand™ has these

features and many others that could be included in Adobe Illustrator using the Adobe Illustrator API.

Levels Color Controls. I use Levels in Photoshop as much (or more) than curves. Levels is perfect for

quick “watermarking” of images.

Layers Management. Many Layer-based functions could be automated or enhanced, such as auto-

matic layer creation, layer sorting and layer linking.

Enhanced Previewing. A plug-in could create a viewing mode that shows anti-aliasing, overprinting,

and individual separations.

Spotlight/Lighting Effects Tool. A tool that could shine a spotlight on the artwork, creating both a

reflected light surface and a drop shadow.

Random Movement and Distortion. A plug-in that scatters paths and points based on specific criteria.

Adobe Illustrator Document Viewer. A plug-in that cycles through custom views, multiple documents,

and more using a simple VCR style palette; mouse clicks could be used to advance through images like

a slide show.

Developing with Adobe Illustrator • PAGE 8/11

✆ADA Technical Journal Volume 1, Number 1

Blur and Blur Tool. Blurring can be done with vector objects, it just isn’t that easy. A plug-in that

automatically blurred would be a tremendous boon.

3D Path Splines. VectorEffects extrudes; Adobe Dimensions® both extrudes and revolves. However,

there is no tool that allows paths to be constructed in three dimensions, or to be displayed that way.

A Stippling Tool. A tool to create stippling effects in Adobe Illustrator software, with varying intensity

and color amounts.

Path Generator. A plug-in that automatically generates random paths based on specific criteria.

Perfect for backgrounds, random objects, and more.

Mosaic Creation. A plug-in to create mosaic tiles from vector artwork; the current Object Mosaic is

quite limited.

Area Tool. Adobe Illustrator software’s Measure tool is fine for measuring distance. An Area tool

would measure the area within several clicked points or selected paths.

Many of these potential plug-ins can be done using little more than the tools provided with the Adobe

Illustrator API. Other plug-ins would require a higher level of complexity. But most, if not all of them,

are doable.

Developing with Adobe Illustrator • PAGE 9/11

✆ADA Technical Journal Volume 1, Number 1

Extensis has feasibly taken a great step forward with its critically acclaimed set of plug-ins, due to

be released in the near future, but there are many more avenues to be explored in the area of vector-

based plug-ins. Using Adobe Illustrator software’s API will make plug-in development much easier

than most developers could imagine; by using it you’ll have access to almost every function within

Adobe Illustrator. §

Developing with Adobe Illustrator • PAGE 10/11

✆ADA Technical Journal Volume 1, Number 1

D E V E L O P I N G W I T H

A d o b e F r a m e M a k e r

Developing with Adobe FrameMaker • PAGE 1/14

Page Oriented Processing—Using the Frame® Developer’s Kit
As a user edits a document, text reflows, page boundaries shift and the page location of objects

changes. Perhaps because pages change so frequently, the Frame Developer’s Kit (FDK) maintains no

list of paragraphs or graphics per page. Nevertheless, FDK client programs can work with docu-

ments in a page oriented way.

This articles addresses two apects of the problem of page-oriented processing:

• Given a page identifier, how can an FDK client find the objects that make up that page?

• Given an object identifier, how can an FDK client determine its page location?

Debra Herman teaches Adobe FrameMaker+SGML and FDK classes. For more information, see her Website at www.dtrain.com or send
email to info@dtrain.com.

www.dtrain.com

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe FrameMaker • PAGE 2/14

Pages and Page Frames
The key to working in a page-oriented way is the page frame, an invisible unanchored frame with the

exact dimensions of the page in question. Everything on a Frame document page is found within this

unanchored frame.

Not a user concept, the page frame is accessible to the FDK programmer using the FP_PageFrame

property of the page. Given a document and page identifier, you can obtain the identifier of the page

frame using the page property FP_PageFrame.

pFrameId = F_ApiGetId(docId, pageId, FP_PageFrame);

Once you know a page’s frame identifier, you can return to that page using the unanchored frame

property FP_PageFramePage.

pageId = F_ApiGetId(docId, pFrameId, FP_PageFramePage);

Finding All Objects on a Page
Frame pages can contain both text and graphics. Thus, to learn what is on a page, you must locate the

text and graphics that make up the page.

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe FrameMaker • PAGE 3/14

Start with the Page Frame
Start out with the identifier of the page that is of interest. Use that identifier to get the associated page

frame identifier. With the page frame identifier you can learn what is on the page by examining the

graphic objects that make up the unanchored frame that is the page frame.

Locate Text and Graphics
This task of locating text is simplified if you recognize that text is found in either text frames or text

lines, both of which are graphic objects. Finding the objects that make up the page can be reduced to

the task of finding the graphics that are in the page frame.

Obtain the list of graphics in the page frame as you would any other list of graphics in a frame. Get

the head of the list using the FP_FirstGraphicInFrame property of the frame. Subsequent graphics are

found using the FP_NextGraphicInFrame property of the graphic found.

Find Nested Graphics
If your client is interested in a limited subset of all graphics, use F_ApiGetObjectType() to determine

the type of graphic found. Even if you are interested in any and all graphics, you need to learn the

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe FrameMaker • PAGE 4/14

type of each graphic found so that your client can correctly process those graphics that might them-

selves contain additional graphics.

The page frame, as any unanchored frame, can contain other unanchored frames or text frames, that

can have within them additional objects of interest. Unanchored frames can contain the whole range

of frame graphics. Text frames can have anchored frames which can themselves contain additional

graphics. Your client must look inside any such objects if it is to find all objects on the page.

To determine if there are anchored frames within a text frame, call F_ApiGextText() specifying the

document and text frame identifier. Request text items of type FTI_FrameAnchor.

 tItems = F_ApiGetText(docId, textFrameId, FTI_FrameAnchor);

To look inside an unanchored frame, examine the list of graphics in that frame much as you might

the list of graphics in the page frame.

In looking for nested graphics, it is not necessary to specially process grouped graphics. The list of

graphics in a frame includes any grouped graphics and the group members.

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe FrameMaker • PAGE 5/14

Counting Graphics
The countGraphicsInFrame() function provides code to locate all graphics within a frame.The

function looks at the list of graphics in the specified frame. If a graphic found is a text frame,

countGraphicsInFrame() looks for all the anchored frames within that text frame. It then calls itself

with the anchored frame identifier to recursively look at the graphics inside each anchored frame.

If a graphic found is an unanchored frame, countGraphicsInFrame() makes a similar recursive call

to examine the unanchored frame’s graphics.

Figure 1 Counting Graphics in a Frame

IntT countGraphicsInFrame(docId, frameId)

 F_ObjHandleT docId;

 F_ObjHandleT frameId; /* FO_Unanchored or FO_AFrame */

{

FO_BodyPage,
FO_RefPage or
FO_MasterPage

FO_UnanchoredFrame

FP_PageFrame

FP_PageFramePage

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe FrameMaker • PAGE 6/14

 F_ObjHandleT graphicId; /* ID of graphic object */

 IntT gType; /* Graphic type */

 IntT i; /* Counter for for loop */

 IntT count=0; /* Graphic count */

 F_TextItemsT tItems; /* Text items */

 graphicId = F_ApiGetId(docId,frameId, FP_FirstGraphicInFrame);

 while (graphicId) {

 count ++; /* Graphic just found */

 gType = F_ApiGetObjectType(docId, graphicId);

 switch (gType) {

 case FO_TextFrame:

 tItems = F_ApiGetText(docId, graphicId, FTI_FrameAnchor);

 if (tItems.len != 0) {

 count += tItems.len; /* Count all FO_Aframes */

 for (i=0; i<tItems.len; i++) /* Look for graphics inside FO_Aframe */

 count += countGraphicsInFrame(docId, tItems.val[i].u.idata);

 }

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe FrameMaker • PAGE 7/14

 F_ApiDeallocateTextItems(&tItems);

 break;

 case FO_UnanchoredFrame:

 /* Look inside unanchored frame for additional graphics */

 count += countGraphicsInFrame(docId, graphicId);

 break;

 }/* End switch */

 graphicId = F_ApiGetId(docId, graphicId, FP_NextGraphicInFrame);

 } /* End while */

 return(count);

}

While countGraphicsInFrame() merely counts all graphics, you might make use of the graphic iden-

tifiers it locates to do more sophisticated processing. Use F_ApiGetObjectType() to selectively process

graphics of a specific type.

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe FrameMaker • PAGE 8/14

Determining an Object’s Page
Determining the page on which an object appears is, in some respects, the inverse of determining all

the graphics on a page. In this case it is the identifier of a frame object that is known, and it is the

identifier of the page that is sought. Much as was the case with finding all graphics on a page, it is the

nesting of anchored frames within text frames and the full range of graphics within unanchored

frames that complicates the task.

Rather than directly seeking a page identifier, it is convenient to find the page frame that contains the

object. Once you know the page frame identifier, it is a simple matter to obtain the page identifier

using the FP_PageFramePage property. The page frame is easily distinguished from other unanchored

frames by the fact that it has no parent. That is, when you get the value of a frame’s FP_FrameParent

and get back a zero identifier, the frame just passed to F_ApiGetId() is the page Frame.

Once you know a page’s frame identifier, you can return to that page using the unanchored frame

property FP_PageFramePage.

pageId = F_ApiGetId(docId, pFrameId, FP_PageFramePage);

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe FrameMaker • PAGE 9/14

Locating Objects of Differing Types
In seeking to locate a frame object on the page frame, it is necessary to move up the tree of objects. In

going from object identifier to the page frame identifier, you face two distinct situations. In the first

case, you have a graphic object (that is not an anchored frame). Such objects have the FP_FrameParent

property. Otherwise, you have an object that appears in a text frame.

Objects In Text Frames
In dealing with an object that is found at some location in text (that is, in a text frame), the best

approach is to translate the object’s text location into a paragraph identifier. Once you know the

object’s location as an F_TextLoctT or an F_TextRangeT, this is an easy matter of examining the data

structure. For objects that might span pages you will need to decide whether to use, for example,

the object start or end as the relevant location.

Objects such as markers have the FP_InTextLoc property that can be used to tie them to a text loca-

tion. Cross References and variables have the FP_TextRange property. By taking the start location in

the text range specified, it is possible to obtain an appropriate paragraph identifier.

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe FrameMaker • PAGE 10/14

Complex objects such as a tables can span pages. You need to narrow your investigation to

a particular cell.

Once you have a paragraph or cell identifier, you can use the FP_InTextFrame property to determine

the text frame in which these objects appear. Recall that text frames do not span pages.

Conveniently enough anchored frames have the FP_InTextFrame property.

tFrameId = F_ApiGetId(docId, aFrameId, FP_InTextFrame);

If the paragraph spans multiple pages, FP_InTextFrame will give you the identifier of the first page.

Subcolumns have the similar FP_ParentTextFrame property, which takes you to their associated text

frame.

tFrameId = F_ApiGetId(docId, sColId, FP_ParentTextFrame);

If the paragraph spans multiple pages, FP_InTextFrame will give you the identifier of the first page.

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe FrameMaker • PAGE 11/14

Graphic Objects
Once you have a text frame, your problem is reduced to that of locating a graphic object. Text frames

along with graphic objects such as unanchored frames, rectangles, arcs, polylines, and groups have the

property FP_FrameParent. This property provides the identifier of the containing frame. There are

three possibilities for the value that is obtained when calling F_ApiGetId() with this graphic object

property:

• The object obtained is in an unanchored frame.

• The object obtained is in an anchored frame.

• No object is obtained, as the graphic in question has no frame parent.

If the object located is an unanchored frame, you need simply ask once again for its frame parent. If

the object is an anchored frame, you can as before use the anchored frame property FP_InTextFrame

to locate the text frame in which it is found.

In the final case, you have by definition located the page frame—that frame whose frame parent is 0.

The work of finding the object’s page is nearly complete.

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe FrameMaker • PAGE 12/14

A schematic view of the process of relating an object identifier to its page frame is shown in Figure 2.

Figure 2 Locating an Object’s Page Frame

FO_TextFrame FO_UnanchoredFrame

FO_Cell

FO_Pgf

FP_InTextFrame

FO_SubCol

FP_ParentTextFrame

FO_Rectangle

FO_Xref

FP_FrameParent

Graphic Objects

and others not shown

NULL

FP_TextRange

FO_AFrame

FO_Marker

FP_InTextLoc

FO_Var

FO_Ti*

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe FrameMaker • PAGE 13/14

Linking Page Frame to Page
Use the FP_PageFramePage property to take you from the page frame to its associated page. If the page

is a body page, use the property FP_PageNumString to get the page number that actually appears on the

printed page or the FP_PageNum property to get its page number relative to the start of the document.

(Counting starts with page zero.) If the page is a master page or reference page, the FP_Name property

identifies the page in question.

The properties that link pages and page frames are shown in Figure 3.

Figure 3 Relating the Page Frame to the Page

FP_PageFramePage
FO_UnanchoredFrame

FP_FrameParent

NULL

Page

✆ADA Technical Journal Volume 1, Number 1

Developing with Adobe FrameMaker • PAGE 14/14

The techniques described for relating objects to their pages shown can be helpful in writing clients

that construct error logs or which do automatic checking for layout problems. But even if you do not

need to track page numbers or examine page breaks, the relationship of objects on the page is central

to gaining an understanding of the architecture of Frame documents. §

✆ADA Technical Journal Volume 1, Number 1

Colophon

All proofs and final output for this newsletter were produced

using Adobe PostScript and Adobe Acrobat Distiller for final

file output. The document review process was accomplished

via electronic distribution using Adobe Acrobat software.

Managing Editor:

Jennifer Cohan, Ursula Kinney

Technical Editor:

Susan Tiner

Art Director:

Min Wang

Designer:

Lorsen Koo

Contributors:

Ted Alspach, Andrew Coven, Nicole Frees,

Debra Herman, Gary Staas, Paul Norton

This newsletter was created using Adobe Acrobat, Adobe PageMaker, and

Adobe Photoshop, and font software from the Adobe Type Library.

Adobe, the Adobe Logo, Acrobat, Adobe Dimensions, Adobe Illustrator, Adobe

Premiere, Distiller, Frame, FrameMaker, PageMaker, Photoshop, and PostScript are

trademarks of Adobe Systems Incorporated. AppleScript, Macintosh, and QuickTime

are trademarks of Apple Computer, Inc. registered in the U.S. and other countries.

Microsoft, Windows, and Visual C++ are either registered trademarks or trademarks

of Microsoft Corporation. UNIX is a registered trademark in the United States and

other countries, licensed exclusively through X/Open Company, Ltd. All other

trademarks are the property of their respective owners.

©1997 Adobe Systems Incorporated. All rights reserved. 5/97

